At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Let's solve the problem step-by-step.
1. Define the variables:
- Let's denote the length of the shorter side of the rectangle as [tex]\( x \)[/tex] meters.
- The length of the longer side is given as 16 meters longer than four times the shorter side.
2. Express the longer side in terms of the shorter side:
- The longer side of the rectangle can be written as [tex]\( 4x + 16 \)[/tex] meters.
3. Write the equation for the area of the rectangle:
- The area of a rectangle is given by the product of its length and width. So, the area can be written as:
[tex]\[ x \times (4x + 16) = 128 \][/tex]
- To simplify, distribute [tex]\( x \)[/tex] on the left side:
[tex]\[ 4x^2 + 16x = 128 \][/tex]
4. Rearrange the equation to standard quadratic form:
- Bring all terms to one side to set the equation to zero:
[tex]\[ 4x^2 + 16x - 128 = 0 \][/tex]
5. Solve the quadratic equation:
- We can solve for [tex]\( x \)[/tex] using the quadratic formula where [tex]\( ax^2 + bx + c = 0 \)[/tex]:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
- Here, [tex]\( a = 4 \)[/tex], [tex]\( b = 16 \)[/tex], and [tex]\( c = -128 \)[/tex].
6. Calculate the discriminant [tex]\( \Delta \)[/tex]:
[tex]\[ \Delta = b^2 - 4ac = 16^2 - 4 \cdot 4 \cdot (-128) = 256 + 2048 = 2304 \][/tex]
7. Find the roots using the quadratic formula:
[tex]\[ x = \frac{-16 \pm \sqrt{2304}}{2 \cdot 4} \][/tex]
[tex]\[ x = \frac{-16 \pm 48}{8} \][/tex]
- This gives us two solutions:
1. [tex]\( x = \frac{-16 + 48}{8} = \frac{32}{8} = 4 \)[/tex]
2. [tex]\( x = \frac{-16 - 48}{8} = \frac{-64}{8} = -8 \)[/tex]
8. Select the valid solution:
- Since lengths cannot be negative, we discard [tex]\( x = -8 \)[/tex].
Therefore, the length of the shorter side of the rectangle is [tex]\( 4 \)[/tex] meters.
1. Define the variables:
- Let's denote the length of the shorter side of the rectangle as [tex]\( x \)[/tex] meters.
- The length of the longer side is given as 16 meters longer than four times the shorter side.
2. Express the longer side in terms of the shorter side:
- The longer side of the rectangle can be written as [tex]\( 4x + 16 \)[/tex] meters.
3. Write the equation for the area of the rectangle:
- The area of a rectangle is given by the product of its length and width. So, the area can be written as:
[tex]\[ x \times (4x + 16) = 128 \][/tex]
- To simplify, distribute [tex]\( x \)[/tex] on the left side:
[tex]\[ 4x^2 + 16x = 128 \][/tex]
4. Rearrange the equation to standard quadratic form:
- Bring all terms to one side to set the equation to zero:
[tex]\[ 4x^2 + 16x - 128 = 0 \][/tex]
5. Solve the quadratic equation:
- We can solve for [tex]\( x \)[/tex] using the quadratic formula where [tex]\( ax^2 + bx + c = 0 \)[/tex]:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
- Here, [tex]\( a = 4 \)[/tex], [tex]\( b = 16 \)[/tex], and [tex]\( c = -128 \)[/tex].
6. Calculate the discriminant [tex]\( \Delta \)[/tex]:
[tex]\[ \Delta = b^2 - 4ac = 16^2 - 4 \cdot 4 \cdot (-128) = 256 + 2048 = 2304 \][/tex]
7. Find the roots using the quadratic formula:
[tex]\[ x = \frac{-16 \pm \sqrt{2304}}{2 \cdot 4} \][/tex]
[tex]\[ x = \frac{-16 \pm 48}{8} \][/tex]
- This gives us two solutions:
1. [tex]\( x = \frac{-16 + 48}{8} = \frac{32}{8} = 4 \)[/tex]
2. [tex]\( x = \frac{-16 - 48}{8} = \frac{-64}{8} = -8 \)[/tex]
8. Select the valid solution:
- Since lengths cannot be negative, we discard [tex]\( x = -8 \)[/tex].
Therefore, the length of the shorter side of the rectangle is [tex]\( 4 \)[/tex] meters.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.