At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's solve the problem step-by-step.
1. Define the variables:
- Let's denote the length of the shorter side of the rectangle as [tex]\( x \)[/tex] meters.
- The length of the longer side is given as 16 meters longer than four times the shorter side.
2. Express the longer side in terms of the shorter side:
- The longer side of the rectangle can be written as [tex]\( 4x + 16 \)[/tex] meters.
3. Write the equation for the area of the rectangle:
- The area of a rectangle is given by the product of its length and width. So, the area can be written as:
[tex]\[ x \times (4x + 16) = 128 \][/tex]
- To simplify, distribute [tex]\( x \)[/tex] on the left side:
[tex]\[ 4x^2 + 16x = 128 \][/tex]
4. Rearrange the equation to standard quadratic form:
- Bring all terms to one side to set the equation to zero:
[tex]\[ 4x^2 + 16x - 128 = 0 \][/tex]
5. Solve the quadratic equation:
- We can solve for [tex]\( x \)[/tex] using the quadratic formula where [tex]\( ax^2 + bx + c = 0 \)[/tex]:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
- Here, [tex]\( a = 4 \)[/tex], [tex]\( b = 16 \)[/tex], and [tex]\( c = -128 \)[/tex].
6. Calculate the discriminant [tex]\( \Delta \)[/tex]:
[tex]\[ \Delta = b^2 - 4ac = 16^2 - 4 \cdot 4 \cdot (-128) = 256 + 2048 = 2304 \][/tex]
7. Find the roots using the quadratic formula:
[tex]\[ x = \frac{-16 \pm \sqrt{2304}}{2 \cdot 4} \][/tex]
[tex]\[ x = \frac{-16 \pm 48}{8} \][/tex]
- This gives us two solutions:
1. [tex]\( x = \frac{-16 + 48}{8} = \frac{32}{8} = 4 \)[/tex]
2. [tex]\( x = \frac{-16 - 48}{8} = \frac{-64}{8} = -8 \)[/tex]
8. Select the valid solution:
- Since lengths cannot be negative, we discard [tex]\( x = -8 \)[/tex].
Therefore, the length of the shorter side of the rectangle is [tex]\( 4 \)[/tex] meters.
1. Define the variables:
- Let's denote the length of the shorter side of the rectangle as [tex]\( x \)[/tex] meters.
- The length of the longer side is given as 16 meters longer than four times the shorter side.
2. Express the longer side in terms of the shorter side:
- The longer side of the rectangle can be written as [tex]\( 4x + 16 \)[/tex] meters.
3. Write the equation for the area of the rectangle:
- The area of a rectangle is given by the product of its length and width. So, the area can be written as:
[tex]\[ x \times (4x + 16) = 128 \][/tex]
- To simplify, distribute [tex]\( x \)[/tex] on the left side:
[tex]\[ 4x^2 + 16x = 128 \][/tex]
4. Rearrange the equation to standard quadratic form:
- Bring all terms to one side to set the equation to zero:
[tex]\[ 4x^2 + 16x - 128 = 0 \][/tex]
5. Solve the quadratic equation:
- We can solve for [tex]\( x \)[/tex] using the quadratic formula where [tex]\( ax^2 + bx + c = 0 \)[/tex]:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
- Here, [tex]\( a = 4 \)[/tex], [tex]\( b = 16 \)[/tex], and [tex]\( c = -128 \)[/tex].
6. Calculate the discriminant [tex]\( \Delta \)[/tex]:
[tex]\[ \Delta = b^2 - 4ac = 16^2 - 4 \cdot 4 \cdot (-128) = 256 + 2048 = 2304 \][/tex]
7. Find the roots using the quadratic formula:
[tex]\[ x = \frac{-16 \pm \sqrt{2304}}{2 \cdot 4} \][/tex]
[tex]\[ x = \frac{-16 \pm 48}{8} \][/tex]
- This gives us two solutions:
1. [tex]\( x = \frac{-16 + 48}{8} = \frac{32}{8} = 4 \)[/tex]
2. [tex]\( x = \frac{-16 - 48}{8} = \frac{-64}{8} = -8 \)[/tex]
8. Select the valid solution:
- Since lengths cannot be negative, we discard [tex]\( x = -8 \)[/tex].
Therefore, the length of the shorter side of the rectangle is [tex]\( 4 \)[/tex] meters.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.