Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine whether the given sequence is geometric and to find the common ratio if it is, follow these steps:
1. Identify the given sequence: 2, -12, 72, -432, ...
2. Calculate the common ratio for the first few terms:
- First term ([tex]\(a_1\)[/tex]): 2
- Second term ([tex]\(a_2\)[/tex]): -12
- Third term ([tex]\(a_3\)[/tex]): 72
- Fourth term ([tex]\(a_4\)[/tex]): -432
3. Compute the ratio between each consecutive pair of terms:
- [tex]\(\frac{a_2}{a_1} = \frac{-12}{2} = -6\)[/tex]
- [tex]\(\frac{a_3}{a_2} = \frac{72}{-12} = -6\)[/tex]
- [tex]\(\frac{a_4}{a_3} = \frac{-432}{72} = -6\)[/tex]
4. Verify if the ratios are consistent: The common ratio we calculated between each pair of consecutive terms ([tex]\(\frac{a_2}{a_1}\)[/tex], [tex]\(\frac{a_3}{a_2}\)[/tex], and [tex]\(\frac{a_4}{a_3}\)[/tex]) is the same, which is -6.
5. Conclusion:
Since the common ratio is the same for each pair of consecutive terms, the sequence is indeed geometric.
6. Identify the common ratio:
The common ratio ([tex]\(r\)[/tex]) is -6.
Final answer:
OA. The given sequence is geometric. The common ratio is [tex]\(r = -6\)[/tex].
1. Identify the given sequence: 2, -12, 72, -432, ...
2. Calculate the common ratio for the first few terms:
- First term ([tex]\(a_1\)[/tex]): 2
- Second term ([tex]\(a_2\)[/tex]): -12
- Third term ([tex]\(a_3\)[/tex]): 72
- Fourth term ([tex]\(a_4\)[/tex]): -432
3. Compute the ratio between each consecutive pair of terms:
- [tex]\(\frac{a_2}{a_1} = \frac{-12}{2} = -6\)[/tex]
- [tex]\(\frac{a_3}{a_2} = \frac{72}{-12} = -6\)[/tex]
- [tex]\(\frac{a_4}{a_3} = \frac{-432}{72} = -6\)[/tex]
4. Verify if the ratios are consistent: The common ratio we calculated between each pair of consecutive terms ([tex]\(\frac{a_2}{a_1}\)[/tex], [tex]\(\frac{a_3}{a_2}\)[/tex], and [tex]\(\frac{a_4}{a_3}\)[/tex]) is the same, which is -6.
5. Conclusion:
Since the common ratio is the same for each pair of consecutive terms, the sequence is indeed geometric.
6. Identify the common ratio:
The common ratio ([tex]\(r\)[/tex]) is -6.
Final answer:
OA. The given sequence is geometric. The common ratio is [tex]\(r = -6\)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.