Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Matilda works in a laboratory in setting the properties of a liquid when it is exposed to heat the volume of the liquid after t hours is represented by the expression 165(0.97)^t determine the hourly rate of decrease in the volume of the liquid

Sagot :

To determine the hourly rate of decrease in the volume of the liquid, we can take the derivative of the volume function with respect to time (\(t\)), which will give us the rate of change of volume with respect to time.

Given that the volume function is represented by \(V(t) = 165 \times (0.97)^t\), we can find its derivative \(V'(t)\) as follows:

\[ V(t) = 165 \times (0.97)^t \]
\[ V'(t) = 165 \times \ln(0.97) \times (0.97)^t \]

This represents the rate of change of volume with respect to time.

So, the hourly rate of decrease in the volume of the liquid is \(V'(t) = 165 \times \ln(0.97) \approx -5.445 \) liters per hour.

Therefore, the volume decreases at a rate of approximately 5.445 liters per hour.