Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the correct value for [tex]\( x \)[/tex] that satisfies the given conditions for the garden box, we can proceed step-by-step by understanding the formulas for area and perimeter and then testing the given options:
1. Define the area and perimeter of the garden box:
- The area [tex]\( A \)[/tex] of a rectangle with length [tex]\( x \)[/tex] and width [tex]\( y \)[/tex] is given by:
[tex]\[ A = x \cdot y \][/tex]
- The perimeter [tex]\( P \)[/tex] of a rectangle is given by:
[tex]\[ P = 2(x + y) \][/tex]
2. Set up the condition given in the problem:
The problem states that the area is equal to five times the perimeter:
[tex]\[ A = 5 \cdot P \][/tex]
Substituting the formulas for area and perimeter, we get:
[tex]\[ x \cdot y = 5 \cdot 2(x + y) \][/tex]
3. Simplify the equation:
[tex]\[ x \cdot y = 10(x + y) \][/tex]
Distribute the 10 on the right side:
[tex]\[ x \cdot y = 10x + 10y \][/tex]
Rearrange to set the equation to zero:
[tex]\[ x \cdot y - 10x - 10y = 0 \][/tex]
4. Test the given options for [tex]\( x \)[/tex]:
- Option 1: [tex]\( x = 20 \)[/tex]
[tex]\[ 20 \cdot y = 10(20 + y) \][/tex]
Simplify:
[tex]\[ 20y = 200 + 10y \][/tex]
Subtract [tex]\( 10y \)[/tex] from both sides:
[tex]\[ 10y = 200 \][/tex]
[tex]\[ y = 20 \][/tex]
Check the values:
[tex]\[ A = 20 \cdot 20 = 400 \][/tex]
[tex]\[ P = 2(20 + 20) = 80 \][/tex]
[tex]\[ 5 \cdot P = 5 \cdot 80 = 400 \][/tex]
This satisfies the condition, so [tex]\( x = 20 \)[/tex] could be a valid answer.
- Option 2: [tex]\( x = 10 \)[/tex]
[tex]\[ 10 \cdot y = 10(10 + y) \][/tex]
Simplify:
[tex]\[ 10y = 100 + 10y \][/tex]
Subtract [tex]\( 10y \)[/tex] from both sides:
[tex]\[ 0 = 100 \][/tex]
This is not possible, so [tex]\( x = 10 \)[/tex] is not a valid answer.
- Option 3: [tex]\( x = 5 \)[/tex]
[tex]\[ 5 \cdot y = 10(5 + y) \][/tex]
Simplify:
[tex]\[ 5y = 50 + 10y \][/tex]
Subtract [tex]\( 5y \)[/tex] from both sides:
[tex]\[ 0 = 50 + 5y \][/tex]
[tex]\[ -5y = 50 \][/tex]
[tex]\[ y = -10 \][/tex]
Dimensions cannot be negative, so [tex]\( x = 5 \)[/tex] is also not a valid answer.
Conclusion:
Out of the given choices, [tex]\( x = 20 \)[/tex] fits the provided conditions. However, reconsidering the problem setup, there are potential oversights and limitations to the assumptions made (such as simplifications or specific values for [tex]\( y \)[/tex]). In this context, the comprehensive solution concludes:
There is not enough information in the problem.
1. Define the area and perimeter of the garden box:
- The area [tex]\( A \)[/tex] of a rectangle with length [tex]\( x \)[/tex] and width [tex]\( y \)[/tex] is given by:
[tex]\[ A = x \cdot y \][/tex]
- The perimeter [tex]\( P \)[/tex] of a rectangle is given by:
[tex]\[ P = 2(x + y) \][/tex]
2. Set up the condition given in the problem:
The problem states that the area is equal to five times the perimeter:
[tex]\[ A = 5 \cdot P \][/tex]
Substituting the formulas for area and perimeter, we get:
[tex]\[ x \cdot y = 5 \cdot 2(x + y) \][/tex]
3. Simplify the equation:
[tex]\[ x \cdot y = 10(x + y) \][/tex]
Distribute the 10 on the right side:
[tex]\[ x \cdot y = 10x + 10y \][/tex]
Rearrange to set the equation to zero:
[tex]\[ x \cdot y - 10x - 10y = 0 \][/tex]
4. Test the given options for [tex]\( x \)[/tex]:
- Option 1: [tex]\( x = 20 \)[/tex]
[tex]\[ 20 \cdot y = 10(20 + y) \][/tex]
Simplify:
[tex]\[ 20y = 200 + 10y \][/tex]
Subtract [tex]\( 10y \)[/tex] from both sides:
[tex]\[ 10y = 200 \][/tex]
[tex]\[ y = 20 \][/tex]
Check the values:
[tex]\[ A = 20 \cdot 20 = 400 \][/tex]
[tex]\[ P = 2(20 + 20) = 80 \][/tex]
[tex]\[ 5 \cdot P = 5 \cdot 80 = 400 \][/tex]
This satisfies the condition, so [tex]\( x = 20 \)[/tex] could be a valid answer.
- Option 2: [tex]\( x = 10 \)[/tex]
[tex]\[ 10 \cdot y = 10(10 + y) \][/tex]
Simplify:
[tex]\[ 10y = 100 + 10y \][/tex]
Subtract [tex]\( 10y \)[/tex] from both sides:
[tex]\[ 0 = 100 \][/tex]
This is not possible, so [tex]\( x = 10 \)[/tex] is not a valid answer.
- Option 3: [tex]\( x = 5 \)[/tex]
[tex]\[ 5 \cdot y = 10(5 + y) \][/tex]
Simplify:
[tex]\[ 5y = 50 + 10y \][/tex]
Subtract [tex]\( 5y \)[/tex] from both sides:
[tex]\[ 0 = 50 + 5y \][/tex]
[tex]\[ -5y = 50 \][/tex]
[tex]\[ y = -10 \][/tex]
Dimensions cannot be negative, so [tex]\( x = 5 \)[/tex] is also not a valid answer.
Conclusion:
Out of the given choices, [tex]\( x = 20 \)[/tex] fits the provided conditions. However, reconsidering the problem setup, there are potential oversights and limitations to the assumptions made (such as simplifications or specific values for [tex]\( y \)[/tex]). In this context, the comprehensive solution concludes:
There is not enough information in the problem.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.