Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the distance between the two parallel lines [tex]\(\ell_1\)[/tex] and [tex]\(\ell_2\)[/tex] given by the equations [tex]\(y = -x - 3\)[/tex] and [tex]\(y = -x + \frac{2}{5}\)[/tex], we use the formula for the distance between two parallel lines [tex]\(y = mx + c_1\)[/tex] and [tex]\(y = mx + c_2\)[/tex]:
[tex]\[ \text{distance} = \frac{|c_1 - c_2|}{\sqrt{1 + m^2}} \][/tex]
Here, both lines have the same slope [tex]\(m = -1\)[/tex].
1. Identify [tex]\(c_1\)[/tex] and [tex]\(c_2\)[/tex] from the equations:
- For [tex]\(\ell_1\)[/tex], the line equation is [tex]\(y = -x - 3\)[/tex], so [tex]\(c_1 = -3\)[/tex].
- For [tex]\(\ell_2\)[/tex], the line equation is [tex]\(y = -x + \frac{2}{5}\)[/tex], so [tex]\(c_2 = \frac{2}{5}\)[/tex].
2. Calculate the difference [tex]\(|c_1 - c_2|\)[/tex]:
[tex]\[ |c_1 - c_2| = \left| -3 - \frac{2}{5} \right| = \left| -3 - 0.4 \right| = \left| -3.4 \right| = 3.4 \][/tex]
3. Calculate the denominator [tex]\(\sqrt{1 + m^2}\)[/tex]:
[tex]\[ \sqrt{1 + (-1)^2} = \sqrt{1 + 1} = \sqrt{2} \][/tex]
4. Substitute these values into the distance formula:
[tex]\[ \text{distance} = \frac{3.4}{\sqrt{2}} \][/tex]
5. Compute the division:
[tex]\[ \frac{3.4}{\sqrt{2}} \approx 2.4041630560342613 \][/tex]
6. Round the result to the nearest tenth:
[tex]\[ 2.4041630560342613 \approx 2.4 \][/tex]
Therefore, the distance between the lines [tex]\(\ell_1\)[/tex] and [tex]\(\ell_2\)[/tex] is approximately [tex]\(2.4\)[/tex] when rounded to the nearest tenth.
[tex]\[ \boxed{2.4} \][/tex]
[tex]\[ \text{distance} = \frac{|c_1 - c_2|}{\sqrt{1 + m^2}} \][/tex]
Here, both lines have the same slope [tex]\(m = -1\)[/tex].
1. Identify [tex]\(c_1\)[/tex] and [tex]\(c_2\)[/tex] from the equations:
- For [tex]\(\ell_1\)[/tex], the line equation is [tex]\(y = -x - 3\)[/tex], so [tex]\(c_1 = -3\)[/tex].
- For [tex]\(\ell_2\)[/tex], the line equation is [tex]\(y = -x + \frac{2}{5}\)[/tex], so [tex]\(c_2 = \frac{2}{5}\)[/tex].
2. Calculate the difference [tex]\(|c_1 - c_2|\)[/tex]:
[tex]\[ |c_1 - c_2| = \left| -3 - \frac{2}{5} \right| = \left| -3 - 0.4 \right| = \left| -3.4 \right| = 3.4 \][/tex]
3. Calculate the denominator [tex]\(\sqrt{1 + m^2}\)[/tex]:
[tex]\[ \sqrt{1 + (-1)^2} = \sqrt{1 + 1} = \sqrt{2} \][/tex]
4. Substitute these values into the distance formula:
[tex]\[ \text{distance} = \frac{3.4}{\sqrt{2}} \][/tex]
5. Compute the division:
[tex]\[ \frac{3.4}{\sqrt{2}} \approx 2.4041630560342613 \][/tex]
6. Round the result to the nearest tenth:
[tex]\[ 2.4041630560342613 \approx 2.4 \][/tex]
Therefore, the distance between the lines [tex]\(\ell_1\)[/tex] and [tex]\(\ell_2\)[/tex] is approximately [tex]\(2.4\)[/tex] when rounded to the nearest tenth.
[tex]\[ \boxed{2.4} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.