Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Simplify and solve the following:

[tex]\( 12^2 + (-1)^{501} \)[/tex]


Sagot :

To solve the given problem step by step, we need to evaluate each term and then combine them. Let's start by breaking down the expression [tex]\( 12^2 + (-1)^{501} \)[/tex].

### Step 1: Evaluate [tex]\( 12^2 \)[/tex]
First, we need to calculate [tex]\( 12^2 \)[/tex].

[tex]\[ 12^2 = 12 \times 12 = 144 \][/tex]

So, [tex]\( 12^2 \)[/tex] equals 144.

### Step 2: Evaluate [tex]\( (-1)^{501} \)[/tex]
Next, we have to evaluate [tex]\( (-1)^{501} \)[/tex].

The pattern for the power of [tex]\((-1)\)[/tex] is that:
- When raised to an even exponent, it is [tex]\(1\)[/tex].
- When raised to an odd exponent, it is [tex]\(-1\)[/tex].

Since 501 is an odd number, we have:

[tex]\[ (-1)^{501} = -1 \][/tex]

### Step 3: Sum the terms
Now, we sum the results obtained in the previous steps:

[tex]\[ 144 + (-1) \][/tex]

When you add these together, you get:

[tex]\[ 144 - 1 = 143 \][/tex]

### Final Answer
Thus, the final result of the expression [tex]\( 12^2 + (-1)^{501} \)[/tex] is:

[tex]\[ \boxed{143} \][/tex]