At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the distance between two parallel lines in the form [tex]\( y = mx + b_1 \)[/tex] and [tex]\( y = mx + b_2 \)[/tex], we use the formula for the distance between two parallel lines:
[tex]\[ \text{distance} = \frac{|c_1 - c_2|}{\sqrt{a^2 + b^2}} \][/tex]
First, let's write the equations of the lines in the general form [tex]\( ax + by + c = 0 \)[/tex]:
For line [tex]\( t_1 \)[/tex]:
[tex]\[ y = -\frac{1}{2}x - \frac{1}{2} \][/tex]
Rewriting this in the general form:
[tex]\[ -\frac{1}{2}x + y + \frac{1}{2} = 0 \quad \text{or} \quad -\frac{1}{2}x + y + \frac{1}{2} = 0 \][/tex]
So, [tex]\( a_1 = -\frac{1}{2} \)[/tex], [tex]\( b_1 = 1 \)[/tex], and [tex]\( c_1 = \frac{1}{2} \)[/tex].
For line [tex]\( t_2 \)[/tex]:
[tex]\[ y = -\frac{1}{2}x + 1 \][/tex]
Rewriting this in the general form:
[tex]\[ -\frac{1}{2}x + y - 1 = 0 \quad \text{or} \quad -\frac{1}{2}x + y - 1 = 0 \][/tex]
So, [tex]\( a_2 = -\frac{1}{2} \)[/tex], [tex]\( b_2 = 1 \)[/tex], and [tex]\( c_2 = -1 \)[/tex].
Now, applying the distance formula:
[tex]\[ \text{distance} = \frac{|c_1 - c_2|}{\sqrt{a^2 + b^2}} \][/tex]
Substituting the values [tex]\( c_1 = \frac{1}{2} \)[/tex], [tex]\( c_2 = -1 \)[/tex], [tex]\( a = -\frac{1}{2} \)[/tex], and [tex]\( b = 1 \)[/tex]:
[tex]\[ \text{distance} = \frac{\left|\frac{1}{2} - (-1)\right|}{\sqrt{\left(-\frac{1}{2}\right)^2 + 1^2}} \][/tex]
Calculate the numerator:
[tex]\[ \left|\frac{1}{2} + 1\right| = \left|\frac{1}{2} + \frac{2}{2}\right| = \left|\frac{3}{2}\right| = \frac{3}{2} \][/tex]
Next, calculate the denominator:
[tex]\[ \sqrt{\left(-\frac{1}{2}\right)^2 + 1^2} = \sqrt{\frac{1}{4} + 1} = \sqrt{\frac{1}{4} + \frac{4}{4}} = \sqrt{\frac{5}{4}} = \frac{\sqrt{5}}{2} \][/tex]
Finally, the distance is:
[tex]\[ \text{distance} = \frac{\frac{3}{2}}{\frac{\sqrt{5}}{2}} = \frac{3}{\sqrt{5}} = \frac{3\sqrt{5}}{5} \][/tex]
Simplifying this, we calculate:
[tex]\[ \frac{3\sqrt{5}}{5} \approx \sqrt{5} \times 0.6 \approx 2.1213203435596424 \][/tex]
Rounding to the nearest tenth:
[tex]\[ \text{distance} \approx 2.1 \][/tex]
Thus, the distance between the lines [tex]\( t_1 \)[/tex] and [tex]\( t_2 \)[/tex] is approximately [tex]\( 2.1 \)[/tex].
[tex]\[ \text{distance} = \frac{|c_1 - c_2|}{\sqrt{a^2 + b^2}} \][/tex]
First, let's write the equations of the lines in the general form [tex]\( ax + by + c = 0 \)[/tex]:
For line [tex]\( t_1 \)[/tex]:
[tex]\[ y = -\frac{1}{2}x - \frac{1}{2} \][/tex]
Rewriting this in the general form:
[tex]\[ -\frac{1}{2}x + y + \frac{1}{2} = 0 \quad \text{or} \quad -\frac{1}{2}x + y + \frac{1}{2} = 0 \][/tex]
So, [tex]\( a_1 = -\frac{1}{2} \)[/tex], [tex]\( b_1 = 1 \)[/tex], and [tex]\( c_1 = \frac{1}{2} \)[/tex].
For line [tex]\( t_2 \)[/tex]:
[tex]\[ y = -\frac{1}{2}x + 1 \][/tex]
Rewriting this in the general form:
[tex]\[ -\frac{1}{2}x + y - 1 = 0 \quad \text{or} \quad -\frac{1}{2}x + y - 1 = 0 \][/tex]
So, [tex]\( a_2 = -\frac{1}{2} \)[/tex], [tex]\( b_2 = 1 \)[/tex], and [tex]\( c_2 = -1 \)[/tex].
Now, applying the distance formula:
[tex]\[ \text{distance} = \frac{|c_1 - c_2|}{\sqrt{a^2 + b^2}} \][/tex]
Substituting the values [tex]\( c_1 = \frac{1}{2} \)[/tex], [tex]\( c_2 = -1 \)[/tex], [tex]\( a = -\frac{1}{2} \)[/tex], and [tex]\( b = 1 \)[/tex]:
[tex]\[ \text{distance} = \frac{\left|\frac{1}{2} - (-1)\right|}{\sqrt{\left(-\frac{1}{2}\right)^2 + 1^2}} \][/tex]
Calculate the numerator:
[tex]\[ \left|\frac{1}{2} + 1\right| = \left|\frac{1}{2} + \frac{2}{2}\right| = \left|\frac{3}{2}\right| = \frac{3}{2} \][/tex]
Next, calculate the denominator:
[tex]\[ \sqrt{\left(-\frac{1}{2}\right)^2 + 1^2} = \sqrt{\frac{1}{4} + 1} = \sqrt{\frac{1}{4} + \frac{4}{4}} = \sqrt{\frac{5}{4}} = \frac{\sqrt{5}}{2} \][/tex]
Finally, the distance is:
[tex]\[ \text{distance} = \frac{\frac{3}{2}}{\frac{\sqrt{5}}{2}} = \frac{3}{\sqrt{5}} = \frac{3\sqrt{5}}{5} \][/tex]
Simplifying this, we calculate:
[tex]\[ \frac{3\sqrt{5}}{5} \approx \sqrt{5} \times 0.6 \approx 2.1213203435596424 \][/tex]
Rounding to the nearest tenth:
[tex]\[ \text{distance} \approx 2.1 \][/tex]
Thus, the distance between the lines [tex]\( t_1 \)[/tex] and [tex]\( t_2 \)[/tex] is approximately [tex]\( 2.1 \)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.