At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Use Pascal's triangle to expand [tex]\((x+3)^4\)[/tex].

A. [tex]\(x^4 + 20x^3 + 90x^2 + 135x + 81\)[/tex]
B. [tex]\(x^4 + 12x^3 + 54x^2 + 108x + 81\)[/tex]
C. [tex]\(x^4 - 12x^3 + 54x^2 - 108x + 81\)[/tex]
D. [tex]\(x^4 - 20x^3 + 90x^2 - 135x + 81\)[/tex]


Sagot :

To expand [tex]\((x + 3)^4\)[/tex] using Pascal's Triangle, we follow these steps:

### Step 1: Identify the coefficients from Pascal's Triangle
For the expansion of [tex]\((x + y)^n\)[/tex], the coefficients are the elements of the row of Pascal's Triangle corresponding to [tex]\(n\)[/tex]. For [tex]\(n = 4\)[/tex], the row is [tex]\([1, 4, 6, 4, 1]\)[/tex].

### Step 2: Write the general form of the Binomial Expansion
Using the coefficients from Pascal's Triangle, the general form of the binomial expansion can be written as:
[tex]\[ (x + 3)^4 = \sum_{k=0}^{4} \binom{4}{k} x^{4-k} \cdot 3^k \][/tex]

### Step 3: Substitute and simplify each term
- For [tex]\(k = 0\)[/tex]: [tex]\(\binom{4}{0} x^{4} \cdot 3^0 = 1 \cdot x^4 \cdot 1 = x^4\)[/tex]
- For [tex]\(k = 1\)[/tex]: [tex]\(\binom{4}{1} x^{3} \cdot 3^1 = 4 \cdot x^3 \cdot 3 = 12x^3\)[/tex]
- For [tex]\(k = 2\)[/tex]: [tex]\(\binom{4}{2} x^{2} \cdot 3^2 = 6 \cdot x^2 \cdot 9 = 54x^2\)[/tex]
- For [tex]\(k = 3\)[/tex]: [tex]\(\binom{4}{3} x^{1} \cdot 3^3 = 4 \cdot x \cdot 27 = 108x\)[/tex]
- For [tex]\(k = 4\)[/tex]: [tex]\(\binom{4}{4} x^{0} \cdot 3^4 = 1 \cdot 1 \cdot 81 = 81\)[/tex]

### Step 4: Combine the terms
Adding all of the simplified terms together, we get:
[tex]\[ (x + 3)^4 = x^4 + 12x^3 + 54x^2 + 108x + 81 \][/tex]

### Conclusion
The expanded form of [tex]\((x + 3)^4\)[/tex] is:
[tex]\[ x^4 + 12x^3 + 54x^2 + 108x + 81 \][/tex]

Thus, the correct answer is:
[tex]\[ \boxed{x^4 + 12 x^3 + 54 x^2 + 108 x + 81} \][/tex]

This matches option B.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.