Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the system of equations that can be used to identify the roots of the equation [tex]\( 2x^3 + 4x^2 - x + 5 = -3x^2 + 4x + 9 \)[/tex], we start by analyzing the given equation and understanding the steps involved in transforming it.
Here are the detailed steps:
1. Starting Equation:
[tex]\[ 2x^3 + 4x^2 - x + 5 = -3x^2 + 4x + 9 \][/tex]
2. Move all terms to one side of the equation:
We can rearrange the equation such that all terms are on one side of the equality.
[tex]\[ 2x^3 + 4x^2 - x + 5 + 3x^2 - 4x - 9 = 0 \][/tex]
3. Combine like terms:
Now we simplify by combining the terms involving [tex]\(x^2\)[/tex], [tex]\(x\)[/tex], and constant terms:
[tex]\[ 2x^3 + 4x^2 + 3x^2 - x - 4x + 5 - 9 = 0 \][/tex]
[tex]\[ 2x^3 + (4 + 3)x^2 + (-1 - 4)x + (5 - 9) = 0 \][/tex]
[tex]\[ 2x^3 + 7x^2 - 5x - 4 = 0 \][/tex]
4. Formulating the System of Equations:
To approach this using a system of equations, we need to create two equations that represent the left-hand and the right-hand side of the original equation separately.
The original equation can be split into:
[tex]\[ y = 2x^3 + 4x^2 - x + 5 \][/tex]
[tex]\[ y = -3x^2 + 4x + 9 \][/tex]
Thus, the system of equations that you can use to find the roots of the original equation is:
[tex]\[ \begin{array}{l} y = 2x^3 + 4x^2 - x + 5 \\ y = -3x^2 + 4x + 9 \end{array} \][/tex]
So the correct system of equations is:
[tex]\[ \begin{array}{l} y = 2x^3 + 4x^2 - x + 5 \\ y = -3x^2 + 4x + 9 \end{array} \][/tex]
And that matches option 3 from the list provided.
Here are the detailed steps:
1. Starting Equation:
[tex]\[ 2x^3 + 4x^2 - x + 5 = -3x^2 + 4x + 9 \][/tex]
2. Move all terms to one side of the equation:
We can rearrange the equation such that all terms are on one side of the equality.
[tex]\[ 2x^3 + 4x^2 - x + 5 + 3x^2 - 4x - 9 = 0 \][/tex]
3. Combine like terms:
Now we simplify by combining the terms involving [tex]\(x^2\)[/tex], [tex]\(x\)[/tex], and constant terms:
[tex]\[ 2x^3 + 4x^2 + 3x^2 - x - 4x + 5 - 9 = 0 \][/tex]
[tex]\[ 2x^3 + (4 + 3)x^2 + (-1 - 4)x + (5 - 9) = 0 \][/tex]
[tex]\[ 2x^3 + 7x^2 - 5x - 4 = 0 \][/tex]
4. Formulating the System of Equations:
To approach this using a system of equations, we need to create two equations that represent the left-hand and the right-hand side of the original equation separately.
The original equation can be split into:
[tex]\[ y = 2x^3 + 4x^2 - x + 5 \][/tex]
[tex]\[ y = -3x^2 + 4x + 9 \][/tex]
Thus, the system of equations that you can use to find the roots of the original equation is:
[tex]\[ \begin{array}{l} y = 2x^3 + 4x^2 - x + 5 \\ y = -3x^2 + 4x + 9 \end{array} \][/tex]
So the correct system of equations is:
[tex]\[ \begin{array}{l} y = 2x^3 + 4x^2 - x + 5 \\ y = -3x^2 + 4x + 9 \end{array} \][/tex]
And that matches option 3 from the list provided.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.