Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Ask your questions and receive precise answers from experienced professionals across different disciplines. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the least common multiple (LCM) of the expressions [tex]\( 8 x^3 u^6 \)[/tex] and [tex]\( 12 x^7 u^2 v^5 \)[/tex], we need to determine the LCM of the coefficients and the highest powers of each variable that appear in the expressions. Let's break this down step-by-step:
1. Identify the coefficients and the variables with their exponents:
- First expression: [tex]\( 8 x^3 u^6 \)[/tex]
- Coefficient: 8
- Variables: [tex]\( x^3 \)[/tex], [tex]\( u^6 \)[/tex]
- Second expression: [tex]\( 12 x^7 u^2 v^5 \)[/tex]
- Coefficient: 12
- Variables: [tex]\( x^7 \)[/tex], [tex]\( u^2 \)[/tex], [tex]\( v^5 \)[/tex]
2. Find the LCM of the coefficients:
- Coefficients are 8 and 12.
- Factorize the coefficients:
- [tex]\( 8 = 2^3 \)[/tex]
- [tex]\( 12 = 2^2 \times 3 \)[/tex]
- The LCM of the coefficients is obtained by taking the highest power of each prime factor:
- [tex]\( \text{LCM}(8, 12) = 2^3 \times 3 = 24 \)[/tex]
3. Determine the highest powers of each variable:
- For [tex]\( x \)[/tex]: [tex]\( x^3 \)[/tex] and [tex]\( x^7 \)[/tex]. The highest power is [tex]\( x^7 \)[/tex].
- For [tex]\( u \)[/tex]: [tex]\( u^6 \)[/tex] and [tex]\( u^2 \)[/tex]. The highest power is [tex]\( u^6 \)[/tex].
- For [tex]\( v \)[/tex]: [tex]\( v \)[/tex] appears only in the second expression, where it is [tex]\( v^5 \)[/tex]. The highest power is [tex]\( v^5 \)[/tex].
4. Construct the LCM using the coefficients and the highest powers of each variable:
- Coefficient: 24
- Variables: [tex]\( x^7 \)[/tex], [tex]\( u^6 \)[/tex], [tex]\( v^5 \)[/tex]
Putting it all together, the LCM of the two expressions is:
[tex]\[ \boxed{24 x^7 u^6 v^5} \][/tex]
So, the least common multiple of [tex]\( 8 x^3 u^6 \)[/tex] and [tex]\( 12 x^7 u^2 v^5 \)[/tex] is [tex]\( 24 x^7 u^6 v^5 \)[/tex].
1. Identify the coefficients and the variables with their exponents:
- First expression: [tex]\( 8 x^3 u^6 \)[/tex]
- Coefficient: 8
- Variables: [tex]\( x^3 \)[/tex], [tex]\( u^6 \)[/tex]
- Second expression: [tex]\( 12 x^7 u^2 v^5 \)[/tex]
- Coefficient: 12
- Variables: [tex]\( x^7 \)[/tex], [tex]\( u^2 \)[/tex], [tex]\( v^5 \)[/tex]
2. Find the LCM of the coefficients:
- Coefficients are 8 and 12.
- Factorize the coefficients:
- [tex]\( 8 = 2^3 \)[/tex]
- [tex]\( 12 = 2^2 \times 3 \)[/tex]
- The LCM of the coefficients is obtained by taking the highest power of each prime factor:
- [tex]\( \text{LCM}(8, 12) = 2^3 \times 3 = 24 \)[/tex]
3. Determine the highest powers of each variable:
- For [tex]\( x \)[/tex]: [tex]\( x^3 \)[/tex] and [tex]\( x^7 \)[/tex]. The highest power is [tex]\( x^7 \)[/tex].
- For [tex]\( u \)[/tex]: [tex]\( u^6 \)[/tex] and [tex]\( u^2 \)[/tex]. The highest power is [tex]\( u^6 \)[/tex].
- For [tex]\( v \)[/tex]: [tex]\( v \)[/tex] appears only in the second expression, where it is [tex]\( v^5 \)[/tex]. The highest power is [tex]\( v^5 \)[/tex].
4. Construct the LCM using the coefficients and the highest powers of each variable:
- Coefficient: 24
- Variables: [tex]\( x^7 \)[/tex], [tex]\( u^6 \)[/tex], [tex]\( v^5 \)[/tex]
Putting it all together, the LCM of the two expressions is:
[tex]\[ \boxed{24 x^7 u^6 v^5} \][/tex]
So, the least common multiple of [tex]\( 8 x^3 u^6 \)[/tex] and [tex]\( 12 x^7 u^2 v^5 \)[/tex] is [tex]\( 24 x^7 u^6 v^5 \)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.