Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the distance between the two parallel lines [tex]\( y = -x - 3 \)[/tex] and [tex]\( y = -x + \frac{1}{2} \)[/tex], we can use the formula for the distance between two parallel lines given in the standard form [tex]\( ax + by + c = 0 \)[/tex]:
[tex]\[ \text{Distance} = \frac{|c_2 - c_1|}{\sqrt{a^2 + b^2}} \][/tex]
First, we rewrite the equations of the lines in the standard form [tex]\( ax + by + c = 0 \)[/tex].
For the line [tex]\( y = -x - 3 \)[/tex]:
[tex]\[ y = -x - 3 \implies x + y + 3 = 0 \][/tex]
Here, the coefficients are:
[tex]\[ a = 1, \quad b = 1, \quad c_1 = 3 \][/tex]
For the line [tex]\( y = -x + \frac{1}{2} \)[/tex]:
[tex]\[ y = -x + \frac{1}{2} \implies x + y - \frac{1}{2} = 0 \][/tex]
Here, the coefficients are:
[tex]\[ a = 1, \quad b = 1, \quad c_2 = -\frac{1}{2} \][/tex]
Next, we plug these coefficients into the distance formula:
[tex]\[ \text{Distance} = \frac{|c_2 - c_1|}{\sqrt{a^2 + b^2}} \][/tex]
Substitute the values:
[tex]\[ \text{Distance} = \frac{\left|- \frac{1}{2} - 3\right|}{\sqrt{1^2 + 1^2}} \][/tex]
Simplify the numerator:
[tex]\[ c_2 - c_1 = - \frac{1}{2} - 3 = - \frac{1}{2} - \frac{6}{2} = - \frac{7}{2} \][/tex]
Taking the absolute value:
[tex]\[ |c_2 - c_1| = \left| - \frac{7}{2} \right| = \frac{7}{2} \][/tex]
Now, compute the denominator:
[tex]\[ \sqrt{a^2 + b^2} = \sqrt{1^2 + 1^2} = \sqrt{1 + 1} = \sqrt{2} \][/tex]
So the distance becomes:
[tex]\[ \text{Distance} = \frac{\frac{7}{2}}{\sqrt{2}} = \frac{7}{2} \cdot \frac{1}{\sqrt{2}} = \frac{7}{2} \cdot \frac{\sqrt{2}}{2} = \frac{7\sqrt{2}}{4} \][/tex]
Now, we approximate this value. First, compute [tex]\( \sqrt{2} \)[/tex]:
[tex]\[ \sqrt{2} \approx 1.414 \][/tex]
So:
[tex]\[ \frac{7\sqrt{2}}{4} \approx \frac{7 \cdot 1.414}{4} = \frac{9.898}{4} \approx 2.4748737341529163 \][/tex]
Rounding to the nearest tenth:
[tex]\[ 2.5 \][/tex]
Thus, the distance between the lines [tex]\( \ell_1 \)[/tex] and [tex]\( \ell_2 \)[/tex] is approximately [tex]\( 2.5 \)[/tex] units.
[tex]\[ \text{Distance} = \frac{|c_2 - c_1|}{\sqrt{a^2 + b^2}} \][/tex]
First, we rewrite the equations of the lines in the standard form [tex]\( ax + by + c = 0 \)[/tex].
For the line [tex]\( y = -x - 3 \)[/tex]:
[tex]\[ y = -x - 3 \implies x + y + 3 = 0 \][/tex]
Here, the coefficients are:
[tex]\[ a = 1, \quad b = 1, \quad c_1 = 3 \][/tex]
For the line [tex]\( y = -x + \frac{1}{2} \)[/tex]:
[tex]\[ y = -x + \frac{1}{2} \implies x + y - \frac{1}{2} = 0 \][/tex]
Here, the coefficients are:
[tex]\[ a = 1, \quad b = 1, \quad c_2 = -\frac{1}{2} \][/tex]
Next, we plug these coefficients into the distance formula:
[tex]\[ \text{Distance} = \frac{|c_2 - c_1|}{\sqrt{a^2 + b^2}} \][/tex]
Substitute the values:
[tex]\[ \text{Distance} = \frac{\left|- \frac{1}{2} - 3\right|}{\sqrt{1^2 + 1^2}} \][/tex]
Simplify the numerator:
[tex]\[ c_2 - c_1 = - \frac{1}{2} - 3 = - \frac{1}{2} - \frac{6}{2} = - \frac{7}{2} \][/tex]
Taking the absolute value:
[tex]\[ |c_2 - c_1| = \left| - \frac{7}{2} \right| = \frac{7}{2} \][/tex]
Now, compute the denominator:
[tex]\[ \sqrt{a^2 + b^2} = \sqrt{1^2 + 1^2} = \sqrt{1 + 1} = \sqrt{2} \][/tex]
So the distance becomes:
[tex]\[ \text{Distance} = \frac{\frac{7}{2}}{\sqrt{2}} = \frac{7}{2} \cdot \frac{1}{\sqrt{2}} = \frac{7}{2} \cdot \frac{\sqrt{2}}{2} = \frac{7\sqrt{2}}{4} \][/tex]
Now, we approximate this value. First, compute [tex]\( \sqrt{2} \)[/tex]:
[tex]\[ \sqrt{2} \approx 1.414 \][/tex]
So:
[tex]\[ \frac{7\sqrt{2}}{4} \approx \frac{7 \cdot 1.414}{4} = \frac{9.898}{4} \approx 2.4748737341529163 \][/tex]
Rounding to the nearest tenth:
[tex]\[ 2.5 \][/tex]
Thus, the distance between the lines [tex]\( \ell_1 \)[/tex] and [tex]\( \ell_2 \)[/tex] is approximately [tex]\( 2.5 \)[/tex] units.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.