Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the least common denominator (LCD) of the fractions [tex]\(\frac{7}{3x} + \frac{2}{x} + \frac{x}{x-1}\)[/tex], we need to identify the denominators and determine the smallest common multiple.
Here are the denominators:
1. [tex]\(3x\)[/tex]
2. [tex]\(x\)[/tex]
3. [tex]\(x-1\)[/tex]
### Step-by-Step Solution:
1. Identify the Factors of Each Denominator:
- The first denominator [tex]\(3x\)[/tex] consists of factors 3 and [tex]\(x\)[/tex].
- The second denominator [tex]\(x\)[/tex] consists of the factor [tex]\(x\)[/tex].
- The third denominator [tex]\(x-1\)[/tex] is already a factored term.
2. Combine Factors:
- To account for all unique factors taking the highest power of each, we get:
- From [tex]\(3x\)[/tex], we include both 3 and [tex]\(x\)[/tex].
- From [tex]\(x\)[/tex], we have [tex]\(x\)[/tex] which is already included in [tex]\(3x\)[/tex].
- From [tex]\(x-1\)[/tex], we include [tex]\(x-1\)[/tex] as it is not a factor in the other denominators.
3. Construct the LCD:
- The least common multiple must include all the unique factors identified above.
- Therefore, the LCD is:
[tex]\[ \text{LCD} = 3 \cdot x \cdot (x - 1) \][/tex]
4. Combine the Factors:
- Multiplying these gives the least common denominator:
[tex]\[ \text{LCD} = 3x(x - 1) \][/tex]
Hence, the least common denominator for the fractions [tex]\(\frac{7}{3x} + \frac{2}{x} + \frac{x}{x-1}\)[/tex] is
[tex]\[ \boxed{3x(x-1)} \][/tex]
Here are the denominators:
1. [tex]\(3x\)[/tex]
2. [tex]\(x\)[/tex]
3. [tex]\(x-1\)[/tex]
### Step-by-Step Solution:
1. Identify the Factors of Each Denominator:
- The first denominator [tex]\(3x\)[/tex] consists of factors 3 and [tex]\(x\)[/tex].
- The second denominator [tex]\(x\)[/tex] consists of the factor [tex]\(x\)[/tex].
- The third denominator [tex]\(x-1\)[/tex] is already a factored term.
2. Combine Factors:
- To account for all unique factors taking the highest power of each, we get:
- From [tex]\(3x\)[/tex], we include both 3 and [tex]\(x\)[/tex].
- From [tex]\(x\)[/tex], we have [tex]\(x\)[/tex] which is already included in [tex]\(3x\)[/tex].
- From [tex]\(x-1\)[/tex], we include [tex]\(x-1\)[/tex] as it is not a factor in the other denominators.
3. Construct the LCD:
- The least common multiple must include all the unique factors identified above.
- Therefore, the LCD is:
[tex]\[ \text{LCD} = 3 \cdot x \cdot (x - 1) \][/tex]
4. Combine the Factors:
- Multiplying these gives the least common denominator:
[tex]\[ \text{LCD} = 3x(x - 1) \][/tex]
Hence, the least common denominator for the fractions [tex]\(\frac{7}{3x} + \frac{2}{x} + \frac{x}{x-1}\)[/tex] is
[tex]\[ \boxed{3x(x-1)} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.