Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine if we can add or subtract the given vectors, we need to ensure that both vectors have the same dimensions. Given two vectors [tex]\( \mathbf{a} \)[/tex] and [tex]\( \mathbf{b} \)[/tex], vector addition [tex]\( \mathbf{a} + \mathbf{b} \)[/tex] or subtraction [tex]\( \mathbf{a} - \mathbf{b} \)[/tex] can only be performed if:
1. Both vectors have the same number of components, meaning the same length.
Let's look at each part of this problem.
The first part of the expression is:
[tex]\[ \left[ \begin{array}{llll} 5 & 2 & -1 & 3 \end{array} \right] + \left[ \begin{array}{llll} 1 & -6 & -6 & -3 \end{array} \right] \][/tex]
Both vectors have the same number of components (4 each). So, we can add them component-wise:
[tex]\[ \left[5 + 1, 2 + (-6), -1 + (-6), 3 + (-3)\right] = \left[6, -4, -7, 0\right] \][/tex]
This results in a new vector:
[tex]\[ \left[ \begin{array}{llll} 6 & -4 & -7 & 0 \end{array} \right] \][/tex]
Now, the problem asks to compare this result to the given vectors:
[tex]\[ \begin{array}{llll} \left[ \begin{array}{llll} 6 & -4 & 5 & 6 \end{array} \right] \\ \left[ \begin{array}{llll} 4 & 8 & 5 & 6 \end{array} \right] \\ \left[ \begin{array}{llll} 6 & -4 & -7 & 0 \end{array} \right] \end{array} \][/tex]
The calculated vector [tex]\(\left[6, -4, -7, 0\right]\)[/tex] is:
- Not equal to [tex]\(\left[6, -4, 5, 6\right]\)[/tex]
- Not equal to [tex]\(\left[4, 8, 5, 6\right]\)[/tex]
- But is equal to [tex]\(\left[6, -4, -7, 0\right]\)[/tex]
Thus, the last given vector matches our resulting vector.
In summary:
- The vectors [tex]\(\left[5, 2, -1, 3\right]\)[/tex] and [tex]\(\left[1, -6, -6, -3\right]\)[/tex] can indeed be added.
- The correct resultant vector is [tex]\(\left[6, -4, -7, 0\right]\)[/tex].
1. Both vectors have the same number of components, meaning the same length.
Let's look at each part of this problem.
The first part of the expression is:
[tex]\[ \left[ \begin{array}{llll} 5 & 2 & -1 & 3 \end{array} \right] + \left[ \begin{array}{llll} 1 & -6 & -6 & -3 \end{array} \right] \][/tex]
Both vectors have the same number of components (4 each). So, we can add them component-wise:
[tex]\[ \left[5 + 1, 2 + (-6), -1 + (-6), 3 + (-3)\right] = \left[6, -4, -7, 0\right] \][/tex]
This results in a new vector:
[tex]\[ \left[ \begin{array}{llll} 6 & -4 & -7 & 0 \end{array} \right] \][/tex]
Now, the problem asks to compare this result to the given vectors:
[tex]\[ \begin{array}{llll} \left[ \begin{array}{llll} 6 & -4 & 5 & 6 \end{array} \right] \\ \left[ \begin{array}{llll} 4 & 8 & 5 & 6 \end{array} \right] \\ \left[ \begin{array}{llll} 6 & -4 & -7 & 0 \end{array} \right] \end{array} \][/tex]
The calculated vector [tex]\(\left[6, -4, -7, 0\right]\)[/tex] is:
- Not equal to [tex]\(\left[6, -4, 5, 6\right]\)[/tex]
- Not equal to [tex]\(\left[4, 8, 5, 6\right]\)[/tex]
- But is equal to [tex]\(\left[6, -4, -7, 0\right]\)[/tex]
Thus, the last given vector matches our resulting vector.
In summary:
- The vectors [tex]\(\left[5, 2, -1, 3\right]\)[/tex] and [tex]\(\left[1, -6, -6, -3\right]\)[/tex] can indeed be added.
- The correct resultant vector is [tex]\(\left[6, -4, -7, 0\right]\)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.