Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the radian measure of a central angle corresponding to an arc that measures [tex]\(250^\circ\)[/tex] and identify its range, we need to follow a step-by-step process:
1. Convert Degrees to Radians:
To convert from degrees to radians, we use the conversion factor [tex]\(\pi \text{ radians} = 180^\circ\)[/tex]. The formula to convert degrees to radians is:
[tex]\[ \text{radians} = \text{degrees} \times \frac{\pi}{180} \][/tex]
Plugging in the given value:
[tex]\[ \text{radians} = 250^\circ \times \frac{\pi}{180} \][/tex]
2. Simplify the Expression:
Performing the multiplication and simplification:
[tex]\[ \text{radians} = 250 \times \frac{\pi}{180} = \frac{250\pi}{180} = \frac{25\pi}{18} \approx 4.363323 \text{ radians} \][/tex]
3. Determine the Range:
Now that we have converted [tex]\(250^\circ\)[/tex] to approximately [tex]\(4.363323 \text{ radians}\)[/tex], we need to determine which of the given ranges this value falls into.
The provided ranges in radian measure are:
- [tex]\(0\)[/tex] to [tex]\(\frac{\pi}{2}\)[/tex] radians
- [tex]\(\frac{\pi}{2}\)[/tex] to [tex]\(\pi\)[/tex] radians
- [tex]\(\pi\)[/tex] to [tex]\(\frac{3\pi}{2}\)[/tex] radians
- [tex]\(\frac{3\pi}{2}\)[/tex] to [tex]\(2\pi\)[/tex] radians
We should compare:
- [tex]\(\pi = 3.141592\)[/tex]
- [tex]\(\frac{3\pi}{2} = 3 \times 1.570796 = 4.712388\)[/tex]
Since [tex]\(4.363323\)[/tex] falls between [tex]\(3.141592\)[/tex] ([tex]\(\pi\)[/tex]) and [tex]\(4.712388\)[/tex] ([tex]\(\frac{3\pi}{2}\)[/tex]), the value is within the range of:
[tex]\[ \boxed{\pi \text{ to } \frac{3\pi}{2} \text{ radians}} \][/tex]
Thus, the radian measure [tex]\(4.363323\)[/tex] for a [tex]\(250^\circ\)[/tex] arc is in the range [tex]\(\pi \text{ to } \frac{3\pi}{2} \text{ radians}\)[/tex].
1. Convert Degrees to Radians:
To convert from degrees to radians, we use the conversion factor [tex]\(\pi \text{ radians} = 180^\circ\)[/tex]. The formula to convert degrees to radians is:
[tex]\[ \text{radians} = \text{degrees} \times \frac{\pi}{180} \][/tex]
Plugging in the given value:
[tex]\[ \text{radians} = 250^\circ \times \frac{\pi}{180} \][/tex]
2. Simplify the Expression:
Performing the multiplication and simplification:
[tex]\[ \text{radians} = 250 \times \frac{\pi}{180} = \frac{250\pi}{180} = \frac{25\pi}{18} \approx 4.363323 \text{ radians} \][/tex]
3. Determine the Range:
Now that we have converted [tex]\(250^\circ\)[/tex] to approximately [tex]\(4.363323 \text{ radians}\)[/tex], we need to determine which of the given ranges this value falls into.
The provided ranges in radian measure are:
- [tex]\(0\)[/tex] to [tex]\(\frac{\pi}{2}\)[/tex] radians
- [tex]\(\frac{\pi}{2}\)[/tex] to [tex]\(\pi\)[/tex] radians
- [tex]\(\pi\)[/tex] to [tex]\(\frac{3\pi}{2}\)[/tex] radians
- [tex]\(\frac{3\pi}{2}\)[/tex] to [tex]\(2\pi\)[/tex] radians
We should compare:
- [tex]\(\pi = 3.141592\)[/tex]
- [tex]\(\frac{3\pi}{2} = 3 \times 1.570796 = 4.712388\)[/tex]
Since [tex]\(4.363323\)[/tex] falls between [tex]\(3.141592\)[/tex] ([tex]\(\pi\)[/tex]) and [tex]\(4.712388\)[/tex] ([tex]\(\frac{3\pi}{2}\)[/tex]), the value is within the range of:
[tex]\[ \boxed{\pi \text{ to } \frac{3\pi}{2} \text{ radians}} \][/tex]
Thus, the radian measure [tex]\(4.363323\)[/tex] for a [tex]\(250^\circ\)[/tex] arc is in the range [tex]\(\pi \text{ to } \frac{3\pi}{2} \text{ radians}\)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.