At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

According to the following reaction:

[tex]\[ 2C(s) + O_2(g) \rightarrow 2CO_2(g) \][/tex]

The moles of [tex]\( CO_2 \)[/tex] produced when 0.25 moles of [tex]\( O_2 \)[/tex] reacts is:

Sagot :

Let's analyze the given chemical reaction:

[tex]\[ 2 \text{C} (s) + \text{O}_2 (g) \rightarrow 2 \text{CO}_2 (g) \][/tex]

This reaction shows that:
- 1 mole of [tex]\(\text{O}_2\)[/tex] reacts to produce 2 moles of [tex]\(\text{CO}_2\)[/tex].

Given that 0.25 moles of [tex]\(\text{O}_2\)[/tex] are reacting, we need to find the moles of [tex]\(\text{CO}_2\)[/tex] produced:

1. According to the stoichiometry of the reaction, 1 mole of [tex]\(\text{O}_2\)[/tex] produces 2 moles of [tex]\(\text{CO}_2\)[/tex].
2. Thus, the moles of [tex]\(\text{CO}_2\)[/tex] produced = (0.25 moles [tex]\(\text{O}_2\)[/tex]) * (2 moles [tex]\(\text{CO}_2\)[/tex] / 1 mole [tex]\(\text{O}_2\)[/tex]).

Using the stoichiometric ratio, we calculate:
[tex]\[ 0.25 \text{ moles } \text{O}_2 \times \frac{2 \text{ moles } \text{CO}_2}{1 \text{ mole } \text{O}_2} = 0.5 \text{ moles } \text{CO}_2 \][/tex]

So, the moles of [tex]\(\text{CO}_2\)[/tex] produced when 0.25 moles of [tex]\(\text{O}_2\)[/tex] reacts is:
[tex]\[ \boxed{0.5} \][/tex] moles.