Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve this problem, we need to apply Coulomb's law, which states that the force between two charged particles is given by the equation:
[tex]\[ F_e = \frac{k q_1 q_2}{r^2} \][/tex]
where
- [tex]\( k = 9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex] is Coulomb's constant,
- [tex]\( q_1 = -6.25 \times 10^{-9} \, \text{C} \)[/tex] is the charge of the first particle,
- [tex]\( q_2 = 2.91 \times 10^{-9} \, \text{C} \)[/tex] is the charge of the second particle,
- [tex]\( r = 0.38 \, \text{m} \)[/tex] is the initial distance between the particles.
First, we calculate the initial force [tex]\( F_{\text{initial}} \)[/tex] with the given distance [tex]\( r = 0.38 \, \text{m} \)[/tex]:
[tex]\[ F_{\text{initial}} = \frac{(9.00 \times 10^9) \cdot (-6.25 \times 10^{-9}) \cdot (2.91 \times 10^{-9})}{(0.38)^2} \][/tex]
Carrying out these calculations, we get:
[tex]\[ F_{\text{initial}} \approx -1.13 \times 10^{-6} \, \text{N} \][/tex]
Next, we need to find the force when the distance is cut in half. The new distance is:
[tex]\[ r_{\text{new}} = \frac{0.38}{2} = 0.19 \, \text{m} \][/tex]
We now calculate the new force [tex]\( F_{\text{new}} \)[/tex] with the reduced distance [tex]\( r_{\text{new}} = 0.19 \, \text{m} \)[/tex]:
[tex]\[ F_{\text{new}} = \frac{(9.00 \times 10^9) \cdot (-6.25 \times 10^{-9}) \cdot (2.91 \times 10^{-9})}{(0.19)^2} \][/tex]
Carrying out these calculations, we get:
[tex]\[ F_{\text{new}} \approx -4.53 \times 10^{-6} \, \text{N} \][/tex]
The two forces we calculated are:
- [tex]\( F_{\text{initial}} \approx -1.13 \times 10^{-6} \, \text{N} \)[/tex]
- [tex]\( F_{\text{new}} \approx -4.53 \times 10^{-6} \, \text{N} \)[/tex]
Based on the given options, the correct answers are:
B. [tex]\( -1.13 \times 10^{-6} \, \text{N} \)[/tex]
C. [tex]\( -4.53 \times 10^{-6} \, \text{N} \)[/tex]
These values match the calculated forces, thus confirming the predictions according to Coulomb's law.
[tex]\[ F_e = \frac{k q_1 q_2}{r^2} \][/tex]
where
- [tex]\( k = 9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex] is Coulomb's constant,
- [tex]\( q_1 = -6.25 \times 10^{-9} \, \text{C} \)[/tex] is the charge of the first particle,
- [tex]\( q_2 = 2.91 \times 10^{-9} \, \text{C} \)[/tex] is the charge of the second particle,
- [tex]\( r = 0.38 \, \text{m} \)[/tex] is the initial distance between the particles.
First, we calculate the initial force [tex]\( F_{\text{initial}} \)[/tex] with the given distance [tex]\( r = 0.38 \, \text{m} \)[/tex]:
[tex]\[ F_{\text{initial}} = \frac{(9.00 \times 10^9) \cdot (-6.25 \times 10^{-9}) \cdot (2.91 \times 10^{-9})}{(0.38)^2} \][/tex]
Carrying out these calculations, we get:
[tex]\[ F_{\text{initial}} \approx -1.13 \times 10^{-6} \, \text{N} \][/tex]
Next, we need to find the force when the distance is cut in half. The new distance is:
[tex]\[ r_{\text{new}} = \frac{0.38}{2} = 0.19 \, \text{m} \][/tex]
We now calculate the new force [tex]\( F_{\text{new}} \)[/tex] with the reduced distance [tex]\( r_{\text{new}} = 0.19 \, \text{m} \)[/tex]:
[tex]\[ F_{\text{new}} = \frac{(9.00 \times 10^9) \cdot (-6.25 \times 10^{-9}) \cdot (2.91 \times 10^{-9})}{(0.19)^2} \][/tex]
Carrying out these calculations, we get:
[tex]\[ F_{\text{new}} \approx -4.53 \times 10^{-6} \, \text{N} \][/tex]
The two forces we calculated are:
- [tex]\( F_{\text{initial}} \approx -1.13 \times 10^{-6} \, \text{N} \)[/tex]
- [tex]\( F_{\text{new}} \approx -4.53 \times 10^{-6} \, \text{N} \)[/tex]
Based on the given options, the correct answers are:
B. [tex]\( -1.13 \times 10^{-6} \, \text{N} \)[/tex]
C. [tex]\( -4.53 \times 10^{-6} \, \text{N} \)[/tex]
These values match the calculated forces, thus confirming the predictions according to Coulomb's law.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.