Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve this problem, we need to apply Coulomb's law, which states that the force between two charged particles is given by the equation:
[tex]\[ F_e = \frac{k q_1 q_2}{r^2} \][/tex]
where
- [tex]\( k = 9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex] is Coulomb's constant,
- [tex]\( q_1 = -6.25 \times 10^{-9} \, \text{C} \)[/tex] is the charge of the first particle,
- [tex]\( q_2 = 2.91 \times 10^{-9} \, \text{C} \)[/tex] is the charge of the second particle,
- [tex]\( r = 0.38 \, \text{m} \)[/tex] is the initial distance between the particles.
First, we calculate the initial force [tex]\( F_{\text{initial}} \)[/tex] with the given distance [tex]\( r = 0.38 \, \text{m} \)[/tex]:
[tex]\[ F_{\text{initial}} = \frac{(9.00 \times 10^9) \cdot (-6.25 \times 10^{-9}) \cdot (2.91 \times 10^{-9})}{(0.38)^2} \][/tex]
Carrying out these calculations, we get:
[tex]\[ F_{\text{initial}} \approx -1.13 \times 10^{-6} \, \text{N} \][/tex]
Next, we need to find the force when the distance is cut in half. The new distance is:
[tex]\[ r_{\text{new}} = \frac{0.38}{2} = 0.19 \, \text{m} \][/tex]
We now calculate the new force [tex]\( F_{\text{new}} \)[/tex] with the reduced distance [tex]\( r_{\text{new}} = 0.19 \, \text{m} \)[/tex]:
[tex]\[ F_{\text{new}} = \frac{(9.00 \times 10^9) \cdot (-6.25 \times 10^{-9}) \cdot (2.91 \times 10^{-9})}{(0.19)^2} \][/tex]
Carrying out these calculations, we get:
[tex]\[ F_{\text{new}} \approx -4.53 \times 10^{-6} \, \text{N} \][/tex]
The two forces we calculated are:
- [tex]\( F_{\text{initial}} \approx -1.13 \times 10^{-6} \, \text{N} \)[/tex]
- [tex]\( F_{\text{new}} \approx -4.53 \times 10^{-6} \, \text{N} \)[/tex]
Based on the given options, the correct answers are:
B. [tex]\( -1.13 \times 10^{-6} \, \text{N} \)[/tex]
C. [tex]\( -4.53 \times 10^{-6} \, \text{N} \)[/tex]
These values match the calculated forces, thus confirming the predictions according to Coulomb's law.
[tex]\[ F_e = \frac{k q_1 q_2}{r^2} \][/tex]
where
- [tex]\( k = 9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex] is Coulomb's constant,
- [tex]\( q_1 = -6.25 \times 10^{-9} \, \text{C} \)[/tex] is the charge of the first particle,
- [tex]\( q_2 = 2.91 \times 10^{-9} \, \text{C} \)[/tex] is the charge of the second particle,
- [tex]\( r = 0.38 \, \text{m} \)[/tex] is the initial distance between the particles.
First, we calculate the initial force [tex]\( F_{\text{initial}} \)[/tex] with the given distance [tex]\( r = 0.38 \, \text{m} \)[/tex]:
[tex]\[ F_{\text{initial}} = \frac{(9.00 \times 10^9) \cdot (-6.25 \times 10^{-9}) \cdot (2.91 \times 10^{-9})}{(0.38)^2} \][/tex]
Carrying out these calculations, we get:
[tex]\[ F_{\text{initial}} \approx -1.13 \times 10^{-6} \, \text{N} \][/tex]
Next, we need to find the force when the distance is cut in half. The new distance is:
[tex]\[ r_{\text{new}} = \frac{0.38}{2} = 0.19 \, \text{m} \][/tex]
We now calculate the new force [tex]\( F_{\text{new}} \)[/tex] with the reduced distance [tex]\( r_{\text{new}} = 0.19 \, \text{m} \)[/tex]:
[tex]\[ F_{\text{new}} = \frac{(9.00 \times 10^9) \cdot (-6.25 \times 10^{-9}) \cdot (2.91 \times 10^{-9})}{(0.19)^2} \][/tex]
Carrying out these calculations, we get:
[tex]\[ F_{\text{new}} \approx -4.53 \times 10^{-6} \, \text{N} \][/tex]
The two forces we calculated are:
- [tex]\( F_{\text{initial}} \approx -1.13 \times 10^{-6} \, \text{N} \)[/tex]
- [tex]\( F_{\text{new}} \approx -4.53 \times 10^{-6} \, \text{N} \)[/tex]
Based on the given options, the correct answers are:
B. [tex]\( -1.13 \times 10^{-6} \, \text{N} \)[/tex]
C. [tex]\( -4.53 \times 10^{-6} \, \text{N} \)[/tex]
These values match the calculated forces, thus confirming the predictions according to Coulomb's law.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.