Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Two particles are separated by 0.38 m and have charges of [tex]\(-6.25 \times 10^{-9} C\)[/tex] and [tex]\(2.91 \times 10^{-9} C\)[/tex].

Use Coulomb's law to predict the force between the particles if the distance is cut in half. The equation for Coulomb's law is [tex]\(F_e=\frac{k q_1 q_2}{r^2}\)[/tex], and the constant [tex]\(k\)[/tex] equals [tex]\(9.00 \times 10^9 N \cdot m^2 / C^2\)[/tex].

A. [tex]\(1.13 \times 10^{-6} N\)[/tex]
B. [tex]\(-1.13 \times 10^{-6} N\)[/tex]
C. [tex]\(-4.53 \times 10^{-6} N\)[/tex]
D. [tex]\(4.53 \times 10^{-6} N\)[/tex]


Sagot :

To solve this problem, we need to apply Coulomb's law, which states that the force between two charged particles is given by the equation:

[tex]\[ F_e = \frac{k q_1 q_2}{r^2} \][/tex]

where
- [tex]\( k = 9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex] is Coulomb's constant,
- [tex]\( q_1 = -6.25 \times 10^{-9} \, \text{C} \)[/tex] is the charge of the first particle,
- [tex]\( q_2 = 2.91 \times 10^{-9} \, \text{C} \)[/tex] is the charge of the second particle,
- [tex]\( r = 0.38 \, \text{m} \)[/tex] is the initial distance between the particles.

First, we calculate the initial force [tex]\( F_{\text{initial}} \)[/tex] with the given distance [tex]\( r = 0.38 \, \text{m} \)[/tex]:

[tex]\[ F_{\text{initial}} = \frac{(9.00 \times 10^9) \cdot (-6.25 \times 10^{-9}) \cdot (2.91 \times 10^{-9})}{(0.38)^2} \][/tex]

Carrying out these calculations, we get:

[tex]\[ F_{\text{initial}} \approx -1.13 \times 10^{-6} \, \text{N} \][/tex]

Next, we need to find the force when the distance is cut in half. The new distance is:

[tex]\[ r_{\text{new}} = \frac{0.38}{2} = 0.19 \, \text{m} \][/tex]

We now calculate the new force [tex]\( F_{\text{new}} \)[/tex] with the reduced distance [tex]\( r_{\text{new}} = 0.19 \, \text{m} \)[/tex]:

[tex]\[ F_{\text{new}} = \frac{(9.00 \times 10^9) \cdot (-6.25 \times 10^{-9}) \cdot (2.91 \times 10^{-9})}{(0.19)^2} \][/tex]

Carrying out these calculations, we get:

[tex]\[ F_{\text{new}} \approx -4.53 \times 10^{-6} \, \text{N} \][/tex]

The two forces we calculated are:
- [tex]\( F_{\text{initial}} \approx -1.13 \times 10^{-6} \, \text{N} \)[/tex]
- [tex]\( F_{\text{new}} \approx -4.53 \times 10^{-6} \, \text{N} \)[/tex]

Based on the given options, the correct answers are:
B. [tex]\( -1.13 \times 10^{-6} \, \text{N} \)[/tex]
C. [tex]\( -4.53 \times 10^{-6} \, \text{N} \)[/tex]

These values match the calculated forces, thus confirming the predictions according to Coulomb's law.