Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

3. It is believed that 40% of workers do not have any health insurance. Suppose this is true and let [tex]\( X \)[/tex] equal the number with no health insurance in a random sample of [tex]\( n=25 \)[/tex] workers.

i. Give the mean, variance, and standard deviation of [tex]\( X \)[/tex].

ii. Find:
(a) [tex]\( P(X \geq 20) \)[/tex]
(b) [tex]\( P(X \leq 5) \)[/tex]
(c) [tex]\( P(X = 10) \)[/tex]


Sagot :

Certainly! Let's address each part of the question step-by-step.

### Part i: Mean, Variance, and Standard Deviation of [tex]\( X \)[/tex]

Given:
- Probability of a worker not having health insurance, [tex]\( p = 0.4 \)[/tex].
- Number of workers in the sample, [tex]\( n = 25 \)[/tex].

#### Mean
The mean [tex]\( \mu \)[/tex] of a binomial distribution is given by:
[tex]\[ \mu = n \cdot p \][/tex]

Substituting the values:
[tex]\[ \mu = 25 \cdot 0.4 = 10.0 \][/tex]

#### Variance
The variance [tex]\( \sigma^2 \)[/tex] of a binomial distribution is given by:
[tex]\[ \sigma^2 = n \cdot p \cdot (1 - p) \][/tex]

Substituting the values:
[tex]\[ \sigma^2 = 25 \cdot 0.4 \cdot (1 - 0.4) = 25 \cdot 0.4 \cdot 0.6 = 6.0 \][/tex]

#### Standard Deviation
The standard deviation [tex]\( \sigma \)[/tex] is the square root of the variance:
[tex]\[ \sigma = \sqrt{\sigma^2} \][/tex]

Substituting the variance:
[tex]\[ \sigma = \sqrt{6.0} \approx 2.449 \][/tex]

So, the mean is [tex]\( 10.0 \)[/tex], the variance is [tex]\( 6.0 \)[/tex], and the standard deviation is approximately [tex]\( 2.449 \)[/tex].

### Part ii: Probability Calculations

#### (a) [tex]\( P(X \geq 20) \)[/tex]

To find [tex]\( P(X \geq 20) \)[/tex], we use the cumulative distribution function (CDF) of the binomial distribution. The CDF up to 19 gives us [tex]\( P(X \leq 19) \)[/tex], so:
[tex]\[ P(X \geq 20) = 1 - P(X \leq 19) \][/tex]

From the computations, [tex]\( P(X \leq 19) \approx 0.999946410253622 \)[/tex], so:
[tex]\[ P(X \geq 20) = 1 - 0.999946410253622 \approx 5.359 \times 10^{-5} \][/tex]

#### (b) [tex]\( P(X \leq 5) \)[/tex]

The probability [tex]\( P(X \leq 5) \)[/tex] can be found directly using the CDF of the binomial distribution:
[tex]\[ P(X \leq 5) \approx 0.02936 \][/tex]

#### (c) [tex]\( P(X = 10) \)[/tex]

The probability [tex]\( P(X = 10) \)[/tex] is given by the probability mass function (PMF) of the binomial distribution:
[tex]\[ P(X = 10) \approx 0.16116 \][/tex]

### Summary:
- Mean: [tex]\( 10.0 \)[/tex]
- Variance: [tex]\( 6.0 \)[/tex]
- Standard Deviation: [tex]\( 2.449 \)[/tex]
- [tex]\( P(X \geq 20) \approx 5.359 \times 10^{-5} \)[/tex]
- [tex]\( P(X \leq 5) \approx 0.02936 \)[/tex]
- [tex]\( P(X = 10) \approx 0.16116 \)[/tex]