Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Alright, let’s simplify the given expression step-by-step:
[tex]\[ \frac{a^2 + b^2 + 2ab}{a^2 - b^2} \][/tex]
1. Identify Useful Identities:
- Recognize that the numerator [tex]\(a^2 + b^2 + 2ab\)[/tex] can be factored using the square of a binomial identity:
[tex]\[ a^2 + b^2 + 2ab = (a + b)^2 \][/tex]
- Recognize that the denominator [tex]\(a^2 - b^2\)[/tex] can be factored using the difference of squares identity:
[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]
2. Substitute the Factored Forms:
- Replace the numerator and the denominator in the expression with their factored forms:
[tex]\[ \frac{(a + b)^2}{(a - b)(a + b)} \][/tex]
3. Simplify the Expression:
- Notice that [tex]\((a + b)\)[/tex] is a common factor in both the numerator and the denominator. We can cancel out this common factor:
[tex]\[ \frac{(a + b)^2}{(a - b)(a + b)} = \frac{(a + b) \cdot (a + b)}{(a - b) \cdot (a + b)} = \frac{a + b}{a - b} \][/tex]
Therefore, the simplified form of the given expression is:
[tex]\[ \frac{a + b}{a - b} \][/tex]
[tex]\[ \frac{a^2 + b^2 + 2ab}{a^2 - b^2} \][/tex]
1. Identify Useful Identities:
- Recognize that the numerator [tex]\(a^2 + b^2 + 2ab\)[/tex] can be factored using the square of a binomial identity:
[tex]\[ a^2 + b^2 + 2ab = (a + b)^2 \][/tex]
- Recognize that the denominator [tex]\(a^2 - b^2\)[/tex] can be factored using the difference of squares identity:
[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]
2. Substitute the Factored Forms:
- Replace the numerator and the denominator in the expression with their factored forms:
[tex]\[ \frac{(a + b)^2}{(a - b)(a + b)} \][/tex]
3. Simplify the Expression:
- Notice that [tex]\((a + b)\)[/tex] is a common factor in both the numerator and the denominator. We can cancel out this common factor:
[tex]\[ \frac{(a + b)^2}{(a - b)(a + b)} = \frac{(a + b) \cdot (a + b)}{(a - b) \cdot (a + b)} = \frac{a + b}{a - b} \][/tex]
Therefore, the simplified form of the given expression is:
[tex]\[ \frac{a + b}{a - b} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.