Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Alright, let’s simplify the given expression step-by-step:
[tex]\[ \frac{a^2 + b^2 + 2ab}{a^2 - b^2} \][/tex]
1. Identify Useful Identities:
- Recognize that the numerator [tex]\(a^2 + b^2 + 2ab\)[/tex] can be factored using the square of a binomial identity:
[tex]\[ a^2 + b^2 + 2ab = (a + b)^2 \][/tex]
- Recognize that the denominator [tex]\(a^2 - b^2\)[/tex] can be factored using the difference of squares identity:
[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]
2. Substitute the Factored Forms:
- Replace the numerator and the denominator in the expression with their factored forms:
[tex]\[ \frac{(a + b)^2}{(a - b)(a + b)} \][/tex]
3. Simplify the Expression:
- Notice that [tex]\((a + b)\)[/tex] is a common factor in both the numerator and the denominator. We can cancel out this common factor:
[tex]\[ \frac{(a + b)^2}{(a - b)(a + b)} = \frac{(a + b) \cdot (a + b)}{(a - b) \cdot (a + b)} = \frac{a + b}{a - b} \][/tex]
Therefore, the simplified form of the given expression is:
[tex]\[ \frac{a + b}{a - b} \][/tex]
[tex]\[ \frac{a^2 + b^2 + 2ab}{a^2 - b^2} \][/tex]
1. Identify Useful Identities:
- Recognize that the numerator [tex]\(a^2 + b^2 + 2ab\)[/tex] can be factored using the square of a binomial identity:
[tex]\[ a^2 + b^2 + 2ab = (a + b)^2 \][/tex]
- Recognize that the denominator [tex]\(a^2 - b^2\)[/tex] can be factored using the difference of squares identity:
[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]
2. Substitute the Factored Forms:
- Replace the numerator and the denominator in the expression with their factored forms:
[tex]\[ \frac{(a + b)^2}{(a - b)(a + b)} \][/tex]
3. Simplify the Expression:
- Notice that [tex]\((a + b)\)[/tex] is a common factor in both the numerator and the denominator. We can cancel out this common factor:
[tex]\[ \frac{(a + b)^2}{(a - b)(a + b)} = \frac{(a + b) \cdot (a + b)}{(a - b) \cdot (a + b)} = \frac{a + b}{a - b} \][/tex]
Therefore, the simplified form of the given expression is:
[tex]\[ \frac{a + b}{a - b} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.