At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's analyze the given relations to determine which one represents a function. A relation is defined as a function if each input maps to exactly one output.
Relation A:
Given in tabular form as:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 10 & 20 & 30 & 40 & 50 \\ \hline y & 1 & 2 & 3 & 4 & 5 \\ \hline \end{array} \][/tex]
For Relation A, observe the pairs [tex]\((x,y)\)[/tex]:
[tex]\[ (10, 1), (20, 2), (30, 3), (40, 4), (50, 5) \][/tex]
In this relation:
- Each [tex]\(x\)[/tex]-value (10, 20, 30, 40, 50) maps to exactly one unique [tex]\(y\)[/tex]-value (1, 2, 3, 4, 5) respectively.
- No [tex]\(x\)[/tex]-value is repeated.
- Therefore, every input [tex]\(x\)[/tex] is associated with exactly one output [tex]\(y\)[/tex].
Hence, Relation A represents a function.
Relation B:
Given as a set of pairs:
[tex]\[ \{(5,4),(4,3),(3,2),(2,1),(3,4)\} \][/tex]
Observe the pairs:
[tex]\[ (5, 4), (4, 3), (3, 2), (2, 1), (3, 4) \][/tex]
In this relation:
- The [tex]\(x\)[/tex]-value 3 maps to both 2 and 4.
- This means that the input 3 does not have a unique output as it corresponds to two different [tex]\(y\)[/tex]-values.
- Therefore, there is an [tex]\(x\)[/tex]-value (3) that is associated with more than one [tex]\(y\)[/tex]-value.
Hence, Relation B does not represent a function.
Summary:
After analyzing both relations, we find that only Relation A meets the criteria for being a function. Thus, the relation that represents a function is:
Relation A.
Relation A:
Given in tabular form as:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 10 & 20 & 30 & 40 & 50 \\ \hline y & 1 & 2 & 3 & 4 & 5 \\ \hline \end{array} \][/tex]
For Relation A, observe the pairs [tex]\((x,y)\)[/tex]:
[tex]\[ (10, 1), (20, 2), (30, 3), (40, 4), (50, 5) \][/tex]
In this relation:
- Each [tex]\(x\)[/tex]-value (10, 20, 30, 40, 50) maps to exactly one unique [tex]\(y\)[/tex]-value (1, 2, 3, 4, 5) respectively.
- No [tex]\(x\)[/tex]-value is repeated.
- Therefore, every input [tex]\(x\)[/tex] is associated with exactly one output [tex]\(y\)[/tex].
Hence, Relation A represents a function.
Relation B:
Given as a set of pairs:
[tex]\[ \{(5,4),(4,3),(3,2),(2,1),(3,4)\} \][/tex]
Observe the pairs:
[tex]\[ (5, 4), (4, 3), (3, 2), (2, 1), (3, 4) \][/tex]
In this relation:
- The [tex]\(x\)[/tex]-value 3 maps to both 2 and 4.
- This means that the input 3 does not have a unique output as it corresponds to two different [tex]\(y\)[/tex]-values.
- Therefore, there is an [tex]\(x\)[/tex]-value (3) that is associated with more than one [tex]\(y\)[/tex]-value.
Hence, Relation B does not represent a function.
Summary:
After analyzing both relations, we find that only Relation A meets the criteria for being a function. Thus, the relation that represents a function is:
Relation A.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.