Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Certainly! Let's solve this problem step by step.
We have the quadratic polynomial [tex]\( p(x) = 5x^2 - 26x + 2m - 9 \)[/tex].
Given that the roots of the polynomial are reciprocal of each other, let's denote the roots by [tex]\( r \)[/tex] and [tex]\( \frac{1}{r} \)[/tex].
### Step 1: Understand the relationship between the roots
For a quadratic polynomial [tex]\( ax^2 + bx + c = 0 \)[/tex], the sum of the roots [tex]\( r_1 \)[/tex] and [tex]\( r_2 \)[/tex] is given by:
[tex]\[ r_1 + r_2 = -\frac{b}{a} \][/tex]
And the product of the roots [tex]\( r_1 \cdot r_2 \)[/tex] is:
[tex]\[ r_1 \cdot r_2 = \frac{c}{a} \][/tex]
### Step 2: Write down the given quadratic polynomial
Here, [tex]\( p(x) = 5x^2 - 26x + 2m - 9 \)[/tex], so we identify:
- [tex]\( a = 5 \)[/tex]
- [tex]\( b = -26 \)[/tex]
- [tex]\( c = 2m - 9 \)[/tex]
### Step 3: Find the product of the roots
Since the roots are reciprocals, the product of the roots [tex]\( r \cdot \frac{1}{r} \)[/tex] is 1.
Using the product of roots formula for quadratic equations:
[tex]\[ r_1 \cdot r_2 = \frac{c}{a} \][/tex]
Substitute [tex]\( c \)[/tex] and [tex]\( a \)[/tex]:
[tex]\[ r \cdot \frac{1}{r} = \frac{2m - 9}{5} \][/tex]
Since [tex]\( r \cdot \frac{1}{r} = 1 \)[/tex]:
[tex]\[ 1 = \frac{2m - 9}{5} \][/tex]
### Step 4: Solve for [tex]\( m \)[/tex]
To find [tex]\( m \)[/tex], we will solve the equation:
[tex]\[ 1 = \frac{2m - 9}{5} \][/tex]
Multiply both sides by 5:
[tex]\[ 5 = 2m - 9 \][/tex]
Add 9 to both sides:
[tex]\[ 5 + 9 = 2m \][/tex]
[tex]\[ 14 = 2m \][/tex]
Divide both sides by 2:
[tex]\[ m = 7 \][/tex]
So, the value of [tex]\( m \)[/tex] is [tex]\( \boxed{7} \)[/tex].
We have the quadratic polynomial [tex]\( p(x) = 5x^2 - 26x + 2m - 9 \)[/tex].
Given that the roots of the polynomial are reciprocal of each other, let's denote the roots by [tex]\( r \)[/tex] and [tex]\( \frac{1}{r} \)[/tex].
### Step 1: Understand the relationship between the roots
For a quadratic polynomial [tex]\( ax^2 + bx + c = 0 \)[/tex], the sum of the roots [tex]\( r_1 \)[/tex] and [tex]\( r_2 \)[/tex] is given by:
[tex]\[ r_1 + r_2 = -\frac{b}{a} \][/tex]
And the product of the roots [tex]\( r_1 \cdot r_2 \)[/tex] is:
[tex]\[ r_1 \cdot r_2 = \frac{c}{a} \][/tex]
### Step 2: Write down the given quadratic polynomial
Here, [tex]\( p(x) = 5x^2 - 26x + 2m - 9 \)[/tex], so we identify:
- [tex]\( a = 5 \)[/tex]
- [tex]\( b = -26 \)[/tex]
- [tex]\( c = 2m - 9 \)[/tex]
### Step 3: Find the product of the roots
Since the roots are reciprocals, the product of the roots [tex]\( r \cdot \frac{1}{r} \)[/tex] is 1.
Using the product of roots formula for quadratic equations:
[tex]\[ r_1 \cdot r_2 = \frac{c}{a} \][/tex]
Substitute [tex]\( c \)[/tex] and [tex]\( a \)[/tex]:
[tex]\[ r \cdot \frac{1}{r} = \frac{2m - 9}{5} \][/tex]
Since [tex]\( r \cdot \frac{1}{r} = 1 \)[/tex]:
[tex]\[ 1 = \frac{2m - 9}{5} \][/tex]
### Step 4: Solve for [tex]\( m \)[/tex]
To find [tex]\( m \)[/tex], we will solve the equation:
[tex]\[ 1 = \frac{2m - 9}{5} \][/tex]
Multiply both sides by 5:
[tex]\[ 5 = 2m - 9 \][/tex]
Add 9 to both sides:
[tex]\[ 5 + 9 = 2m \][/tex]
[tex]\[ 14 = 2m \][/tex]
Divide both sides by 2:
[tex]\[ m = 7 \][/tex]
So, the value of [tex]\( m \)[/tex] is [tex]\( \boxed{7} \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.