Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the [tex]\( x \)[/tex]-intercept of the original function [tex]\( f(x) = 2x - \frac{1}{2} \)[/tex], we follow these steps:
1. Understand the [tex]\( x \)[/tex]-intercept: The [tex]\( x \)[/tex]-intercept is the value of [tex]\( x \)[/tex] where the function [tex]\( f(x) \)[/tex] equals zero. This means we need to solve the equation [tex]\( f(x) = 0 \)[/tex].
2. Set the function equal to zero:
[tex]\[ f(x) = 2x - \frac{1}{2} = 0 \][/tex]
3. Solve for [tex]\( x \)[/tex]:
- First, isolate [tex]\( x \)[/tex] by adding [tex]\( \frac{1}{2} \)[/tex] to both sides of the equation:
[tex]\[ 2x - \frac{1}{2} + \frac{1}{2} = 0 + \frac{1}{2} \][/tex]
which simplifies to:
[tex]\[ 2x = \frac{1}{2} \][/tex]
- Next, divide both sides by 2:
[tex]\[ x = \frac{\frac{1}{2}}{2} = \frac{1}{4} \][/tex]
Thus, the [tex]\( x \)[/tex]-intercept for [tex]\( f(x) = 2x - \frac{1}{2} \)[/tex] is [tex]\( \frac{1}{4} \)[/tex].
Comparison with the given statements:
- The [tex]\( x \)[/tex]-intercept is NOT the constant in the [tex]\( f(x) \)[/tex] equation, since the constant in [tex]\( f(x) \)[/tex] is [tex]\(-\frac{1}{2}\)[/tex].
- The [tex]\( x \)[/tex]-intercept is NOT the constant in the [tex]\( f^{-1}(x) \)[/tex] equation, as the constant in [tex]\( f^{-1}(x) \)[/tex] is [tex]\( \frac{1}{4} \)[/tex].
- The correct statement is:
[tex]\[ \text{The } x\text{-intercept for } f(x) \text{ is the reciprocal of the constant in the } f(x) \text{ equation.} \][/tex]
since [tex]\((2)^{-1} = \frac{1}{2}\)[/tex]. However, we need to solve for [tex]\( x \)[/tex] by dividing by 2, leading to [tex]\( \frac{1}{4} \)[/tex].
So the correct statement is: The x-intercept for [tex]\( f(x) \)[/tex] is the reciprocal of the constant in the [tex]\( f(x) \)[/tex] equation divided by 2.
1. Understand the [tex]\( x \)[/tex]-intercept: The [tex]\( x \)[/tex]-intercept is the value of [tex]\( x \)[/tex] where the function [tex]\( f(x) \)[/tex] equals zero. This means we need to solve the equation [tex]\( f(x) = 0 \)[/tex].
2. Set the function equal to zero:
[tex]\[ f(x) = 2x - \frac{1}{2} = 0 \][/tex]
3. Solve for [tex]\( x \)[/tex]:
- First, isolate [tex]\( x \)[/tex] by adding [tex]\( \frac{1}{2} \)[/tex] to both sides of the equation:
[tex]\[ 2x - \frac{1}{2} + \frac{1}{2} = 0 + \frac{1}{2} \][/tex]
which simplifies to:
[tex]\[ 2x = \frac{1}{2} \][/tex]
- Next, divide both sides by 2:
[tex]\[ x = \frac{\frac{1}{2}}{2} = \frac{1}{4} \][/tex]
Thus, the [tex]\( x \)[/tex]-intercept for [tex]\( f(x) = 2x - \frac{1}{2} \)[/tex] is [tex]\( \frac{1}{4} \)[/tex].
Comparison with the given statements:
- The [tex]\( x \)[/tex]-intercept is NOT the constant in the [tex]\( f(x) \)[/tex] equation, since the constant in [tex]\( f(x) \)[/tex] is [tex]\(-\frac{1}{2}\)[/tex].
- The [tex]\( x \)[/tex]-intercept is NOT the constant in the [tex]\( f^{-1}(x) \)[/tex] equation, as the constant in [tex]\( f^{-1}(x) \)[/tex] is [tex]\( \frac{1}{4} \)[/tex].
- The correct statement is:
[tex]\[ \text{The } x\text{-intercept for } f(x) \text{ is the reciprocal of the constant in the } f(x) \text{ equation.} \][/tex]
since [tex]\((2)^{-1} = \frac{1}{2}\)[/tex]. However, we need to solve for [tex]\( x \)[/tex] by dividing by 2, leading to [tex]\( \frac{1}{4} \)[/tex].
So the correct statement is: The x-intercept for [tex]\( f(x) \)[/tex] is the reciprocal of the constant in the [tex]\( f(x) \)[/tex] equation divided by 2.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.