Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the [tex]\( x \)[/tex]-intercept of the original function [tex]\( f(x) = 2x - \frac{1}{2} \)[/tex], we follow these steps:
1. Understand the [tex]\( x \)[/tex]-intercept: The [tex]\( x \)[/tex]-intercept is the value of [tex]\( x \)[/tex] where the function [tex]\( f(x) \)[/tex] equals zero. This means we need to solve the equation [tex]\( f(x) = 0 \)[/tex].
2. Set the function equal to zero:
[tex]\[ f(x) = 2x - \frac{1}{2} = 0 \][/tex]
3. Solve for [tex]\( x \)[/tex]:
- First, isolate [tex]\( x \)[/tex] by adding [tex]\( \frac{1}{2} \)[/tex] to both sides of the equation:
[tex]\[ 2x - \frac{1}{2} + \frac{1}{2} = 0 + \frac{1}{2} \][/tex]
which simplifies to:
[tex]\[ 2x = \frac{1}{2} \][/tex]
- Next, divide both sides by 2:
[tex]\[ x = \frac{\frac{1}{2}}{2} = \frac{1}{4} \][/tex]
Thus, the [tex]\( x \)[/tex]-intercept for [tex]\( f(x) = 2x - \frac{1}{2} \)[/tex] is [tex]\( \frac{1}{4} \)[/tex].
Comparison with the given statements:
- The [tex]\( x \)[/tex]-intercept is NOT the constant in the [tex]\( f(x) \)[/tex] equation, since the constant in [tex]\( f(x) \)[/tex] is [tex]\(-\frac{1}{2}\)[/tex].
- The [tex]\( x \)[/tex]-intercept is NOT the constant in the [tex]\( f^{-1}(x) \)[/tex] equation, as the constant in [tex]\( f^{-1}(x) \)[/tex] is [tex]\( \frac{1}{4} \)[/tex].
- The correct statement is:
[tex]\[ \text{The } x\text{-intercept for } f(x) \text{ is the reciprocal of the constant in the } f(x) \text{ equation.} \][/tex]
since [tex]\((2)^{-1} = \frac{1}{2}\)[/tex]. However, we need to solve for [tex]\( x \)[/tex] by dividing by 2, leading to [tex]\( \frac{1}{4} \)[/tex].
So the correct statement is: The x-intercept for [tex]\( f(x) \)[/tex] is the reciprocal of the constant in the [tex]\( f(x) \)[/tex] equation divided by 2.
1. Understand the [tex]\( x \)[/tex]-intercept: The [tex]\( x \)[/tex]-intercept is the value of [tex]\( x \)[/tex] where the function [tex]\( f(x) \)[/tex] equals zero. This means we need to solve the equation [tex]\( f(x) = 0 \)[/tex].
2. Set the function equal to zero:
[tex]\[ f(x) = 2x - \frac{1}{2} = 0 \][/tex]
3. Solve for [tex]\( x \)[/tex]:
- First, isolate [tex]\( x \)[/tex] by adding [tex]\( \frac{1}{2} \)[/tex] to both sides of the equation:
[tex]\[ 2x - \frac{1}{2} + \frac{1}{2} = 0 + \frac{1}{2} \][/tex]
which simplifies to:
[tex]\[ 2x = \frac{1}{2} \][/tex]
- Next, divide both sides by 2:
[tex]\[ x = \frac{\frac{1}{2}}{2} = \frac{1}{4} \][/tex]
Thus, the [tex]\( x \)[/tex]-intercept for [tex]\( f(x) = 2x - \frac{1}{2} \)[/tex] is [tex]\( \frac{1}{4} \)[/tex].
Comparison with the given statements:
- The [tex]\( x \)[/tex]-intercept is NOT the constant in the [tex]\( f(x) \)[/tex] equation, since the constant in [tex]\( f(x) \)[/tex] is [tex]\(-\frac{1}{2}\)[/tex].
- The [tex]\( x \)[/tex]-intercept is NOT the constant in the [tex]\( f^{-1}(x) \)[/tex] equation, as the constant in [tex]\( f^{-1}(x) \)[/tex] is [tex]\( \frac{1}{4} \)[/tex].
- The correct statement is:
[tex]\[ \text{The } x\text{-intercept for } f(x) \text{ is the reciprocal of the constant in the } f(x) \text{ equation.} \][/tex]
since [tex]\((2)^{-1} = \frac{1}{2}\)[/tex]. However, we need to solve for [tex]\( x \)[/tex] by dividing by 2, leading to [tex]\( \frac{1}{4} \)[/tex].
So the correct statement is: The x-intercept for [tex]\( f(x) \)[/tex] is the reciprocal of the constant in the [tex]\( f(x) \)[/tex] equation divided by 2.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.