Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine which of the given options is an irrational number, we need to evaluate each expression under the square root and check if the result is a rational number or irrational number.
### Option (a) [tex]\(\sqrt{\frac{9}{49}}\)[/tex]
1. [tex]\(\frac{9}{49} = \frac{3^2}{7^2}\)[/tex]
2. [tex]\(\sqrt{\frac{9}{49}} = \sqrt{\frac{3^2}{7^2}} = \frac{3}{7}\)[/tex]
Since [tex]\(\frac{3}{7}\)[/tex] is a rational number, option (a) is rational.
### Option (b) [tex]\(\sqrt{\frac{4}{27}}\)[/tex]
1. [tex]\(\frac{4}{27} = \frac{2^2}{3^3}\)[/tex]
2. [tex]\(\sqrt{\frac{4}{27}} = \sqrt{\frac{2^2}{3^3}} = \frac{2}{\sqrt{27}}\)[/tex]
Since [tex]\(\sqrt{27} = 3\sqrt{3}\)[/tex], [tex]\(\frac{2}{\sqrt{27}} = \frac{2}{3\sqrt{3}}\)[/tex], which can be simplified but still involves an irrational component [tex]\(\sqrt{3}\)[/tex]. Thus, option (b) is irrational.
### Option (c) [tex]\(\sqrt{\frac{9}{25}}\)[/tex]
1. [tex]\(\frac{9}{25} = \frac{3^2}{5^2}\)[/tex]
2. [tex]\(\sqrt{\frac{9}{25}} = \sqrt{\frac{3^2}{5^2}} = \frac{3}{5}\)[/tex]
Since [tex]\(\frac{3}{5}\)[/tex] is a rational number, option (c) is rational.
### Option (d) [tex]\(\sqrt{\frac{2}{8}}\)[/tex]
1. [tex]\(\frac{2}{8} = \frac{1}{4}\)[/tex]
2. [tex]\(\sqrt{\frac{2}{8}} = \sqrt{\frac{1}{4}} = \frac{1}{2}\)[/tex]
Since [tex]\(\frac{1}{2}\)[/tex] is a rational number, option (d) is rational.
### Conclusion
After evaluating all options, we find that:
- Option (a) is rational.
- Option (b) is irrational.
- Option (c) is rational.
- Option (d) is rational.
Therefore, the irrational option is:
(b) [tex]\(\sqrt{\frac{4}{27}}\)[/tex]
### Option (a) [tex]\(\sqrt{\frac{9}{49}}\)[/tex]
1. [tex]\(\frac{9}{49} = \frac{3^2}{7^2}\)[/tex]
2. [tex]\(\sqrt{\frac{9}{49}} = \sqrt{\frac{3^2}{7^2}} = \frac{3}{7}\)[/tex]
Since [tex]\(\frac{3}{7}\)[/tex] is a rational number, option (a) is rational.
### Option (b) [tex]\(\sqrt{\frac{4}{27}}\)[/tex]
1. [tex]\(\frac{4}{27} = \frac{2^2}{3^3}\)[/tex]
2. [tex]\(\sqrt{\frac{4}{27}} = \sqrt{\frac{2^2}{3^3}} = \frac{2}{\sqrt{27}}\)[/tex]
Since [tex]\(\sqrt{27} = 3\sqrt{3}\)[/tex], [tex]\(\frac{2}{\sqrt{27}} = \frac{2}{3\sqrt{3}}\)[/tex], which can be simplified but still involves an irrational component [tex]\(\sqrt{3}\)[/tex]. Thus, option (b) is irrational.
### Option (c) [tex]\(\sqrt{\frac{9}{25}}\)[/tex]
1. [tex]\(\frac{9}{25} = \frac{3^2}{5^2}\)[/tex]
2. [tex]\(\sqrt{\frac{9}{25}} = \sqrt{\frac{3^2}{5^2}} = \frac{3}{5}\)[/tex]
Since [tex]\(\frac{3}{5}\)[/tex] is a rational number, option (c) is rational.
### Option (d) [tex]\(\sqrt{\frac{2}{8}}\)[/tex]
1. [tex]\(\frac{2}{8} = \frac{1}{4}\)[/tex]
2. [tex]\(\sqrt{\frac{2}{8}} = \sqrt{\frac{1}{4}} = \frac{1}{2}\)[/tex]
Since [tex]\(\frac{1}{2}\)[/tex] is a rational number, option (d) is rational.
### Conclusion
After evaluating all options, we find that:
- Option (a) is rational.
- Option (b) is irrational.
- Option (c) is rational.
- Option (d) is rational.
Therefore, the irrational option is:
(b) [tex]\(\sqrt{\frac{4}{27}}\)[/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.