Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine which of the given options is an irrational number, we need to evaluate each expression under the square root and check if the result is a rational number or irrational number.
### Option (a) [tex]\(\sqrt{\frac{9}{49}}\)[/tex]
1. [tex]\(\frac{9}{49} = \frac{3^2}{7^2}\)[/tex]
2. [tex]\(\sqrt{\frac{9}{49}} = \sqrt{\frac{3^2}{7^2}} = \frac{3}{7}\)[/tex]
Since [tex]\(\frac{3}{7}\)[/tex] is a rational number, option (a) is rational.
### Option (b) [tex]\(\sqrt{\frac{4}{27}}\)[/tex]
1. [tex]\(\frac{4}{27} = \frac{2^2}{3^3}\)[/tex]
2. [tex]\(\sqrt{\frac{4}{27}} = \sqrt{\frac{2^2}{3^3}} = \frac{2}{\sqrt{27}}\)[/tex]
Since [tex]\(\sqrt{27} = 3\sqrt{3}\)[/tex], [tex]\(\frac{2}{\sqrt{27}} = \frac{2}{3\sqrt{3}}\)[/tex], which can be simplified but still involves an irrational component [tex]\(\sqrt{3}\)[/tex]. Thus, option (b) is irrational.
### Option (c) [tex]\(\sqrt{\frac{9}{25}}\)[/tex]
1. [tex]\(\frac{9}{25} = \frac{3^2}{5^2}\)[/tex]
2. [tex]\(\sqrt{\frac{9}{25}} = \sqrt{\frac{3^2}{5^2}} = \frac{3}{5}\)[/tex]
Since [tex]\(\frac{3}{5}\)[/tex] is a rational number, option (c) is rational.
### Option (d) [tex]\(\sqrt{\frac{2}{8}}\)[/tex]
1. [tex]\(\frac{2}{8} = \frac{1}{4}\)[/tex]
2. [tex]\(\sqrt{\frac{2}{8}} = \sqrt{\frac{1}{4}} = \frac{1}{2}\)[/tex]
Since [tex]\(\frac{1}{2}\)[/tex] is a rational number, option (d) is rational.
### Conclusion
After evaluating all options, we find that:
- Option (a) is rational.
- Option (b) is irrational.
- Option (c) is rational.
- Option (d) is rational.
Therefore, the irrational option is:
(b) [tex]\(\sqrt{\frac{4}{27}}\)[/tex]
### Option (a) [tex]\(\sqrt{\frac{9}{49}}\)[/tex]
1. [tex]\(\frac{9}{49} = \frac{3^2}{7^2}\)[/tex]
2. [tex]\(\sqrt{\frac{9}{49}} = \sqrt{\frac{3^2}{7^2}} = \frac{3}{7}\)[/tex]
Since [tex]\(\frac{3}{7}\)[/tex] is a rational number, option (a) is rational.
### Option (b) [tex]\(\sqrt{\frac{4}{27}}\)[/tex]
1. [tex]\(\frac{4}{27} = \frac{2^2}{3^3}\)[/tex]
2. [tex]\(\sqrt{\frac{4}{27}} = \sqrt{\frac{2^2}{3^3}} = \frac{2}{\sqrt{27}}\)[/tex]
Since [tex]\(\sqrt{27} = 3\sqrt{3}\)[/tex], [tex]\(\frac{2}{\sqrt{27}} = \frac{2}{3\sqrt{3}}\)[/tex], which can be simplified but still involves an irrational component [tex]\(\sqrt{3}\)[/tex]. Thus, option (b) is irrational.
### Option (c) [tex]\(\sqrt{\frac{9}{25}}\)[/tex]
1. [tex]\(\frac{9}{25} = \frac{3^2}{5^2}\)[/tex]
2. [tex]\(\sqrt{\frac{9}{25}} = \sqrt{\frac{3^2}{5^2}} = \frac{3}{5}\)[/tex]
Since [tex]\(\frac{3}{5}\)[/tex] is a rational number, option (c) is rational.
### Option (d) [tex]\(\sqrt{\frac{2}{8}}\)[/tex]
1. [tex]\(\frac{2}{8} = \frac{1}{4}\)[/tex]
2. [tex]\(\sqrt{\frac{2}{8}} = \sqrt{\frac{1}{4}} = \frac{1}{2}\)[/tex]
Since [tex]\(\frac{1}{2}\)[/tex] is a rational number, option (d) is rational.
### Conclusion
After evaluating all options, we find that:
- Option (a) is rational.
- Option (b) is irrational.
- Option (c) is rational.
- Option (d) is rational.
Therefore, the irrational option is:
(b) [tex]\(\sqrt{\frac{4}{27}}\)[/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.