Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve this problem, we need to find the linear regression equation of the form [tex]\( y = mx + b \)[/tex], where:
- [tex]\( y \)[/tex] is the profit in thousands of dollars,
- [tex]\( x \)[/tex] is the number of years since 2012,
- [tex]\( m \)[/tex] is the slope of the line,
- [tex]\( b \)[/tex] is the y-intercept of the line.
Given data points:
[tex]\[ (x_i, y_i): \quad (0, 127), (1, 126), (2, 151), (3, 169) \][/tex]
### Step 1: Calculate the Means
First, we calculate the means of the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values.
[tex]\[ \bar{x} = \frac{\sum x_i}{n} = \frac{0 + 1 + 2 + 3}{4} = \frac{6}{4} = 1.5 \][/tex]
[tex]\[ \bar{y} = \frac{\sum y_i}{n} = \frac{127 + 126 + 151 + 169}{4} = \frac{573}{4} = 143.25 \][/tex]
### Step 2: Calculate the Slope (m) and Intercept (b)
The formulas for the slope [tex]\( m \)[/tex] and intercept [tex]\( b \)[/tex] are:
[tex]\[ m = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} \][/tex]
[tex]\[ b = \bar{y} - m\bar{x} \][/tex]
To find [tex]\( m \)[/tex], we first need to compute the components:
[tex]\[ \sum (x_i - \bar{x})(y_i - \bar{y}) = (0-1.5)(127-143.25) + (1-1.5)(126-143.25) + (2-1.5)(151-143.25) + (3-1.5)(169-143.25) \][/tex]
[tex]\[ \sum (x_i - \bar{x})(y_i - \bar{y}) = (-1.5)(-16.25) + (-0.5)(-17.25) + (0.5)(7.75) + (1.5)(25.75) \][/tex]
[tex]\[ \sum (x_i - \bar{x})(y_i - \bar{y}) = 24.375 + 8.625 + 3.875 + 38.625 = 75.5 \][/tex]
Next, we find [tex]\( \sum (x_i - \bar{x})^2 \)[/tex]:
[tex]\[ \sum (x_i - \bar{x})^2 = (0-1.5)^2 + (1-1.5)^2 + (2-1.5)^2 + (3-1.5)^2 \][/tex]
[tex]\[ \sum (x_i - \bar{x})^2 = 2.25 + 0.25 + 0.25 + 2.25 = 5 \][/tex]
Now, calculate the slope [tex]\( m \)[/tex]:
[tex]\[ m = \frac{75.5}{5} = 15.1 \][/tex]
Finally, calculate the intercept [tex]\( b \)[/tex]:
[tex]\[ b = \bar{y} - m\bar{x} = 143.25 - (15.1 \cdot 1.5) = 143.25 - 22.65 = 120.6 \][/tex]
### Step 3: Write the Linear Regression Equation
The linear regression equation is:
[tex]\[ y = 15.1x + 120.6 \][/tex]
### Step 4: Project the Profit for 2021
To find the profit for 2021, note that 2021 is 9 years since 2012 ([tex]\( x = 9 \)[/tex]):
[tex]\[ y = 15.1 \cdot 9 + 120.6 \][/tex]
[tex]\[ y = 135.9 + 120.6 = 256.5 \][/tex]
Rounding to the nearest thousand dollars:
[tex]\[ y \approx 257 \ \text{thousand dollars} \][/tex]
### Final Answer
- Regression Equation: [tex]\( y = 15.1x + 120.6 \)[/tex]
- Projected Profit for 2021: [tex]\( 257 \ \text{thousand dollars} \)[/tex]
Please fill in the answer slots as required:
- Regression Equation: [tex]\( y = 15.1x + 120.6 \)[/tex]
- Final Answer: [tex]\( 257 \ \text{thousand dollars} \)[/tex]
- [tex]\( y \)[/tex] is the profit in thousands of dollars,
- [tex]\( x \)[/tex] is the number of years since 2012,
- [tex]\( m \)[/tex] is the slope of the line,
- [tex]\( b \)[/tex] is the y-intercept of the line.
Given data points:
[tex]\[ (x_i, y_i): \quad (0, 127), (1, 126), (2, 151), (3, 169) \][/tex]
### Step 1: Calculate the Means
First, we calculate the means of the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values.
[tex]\[ \bar{x} = \frac{\sum x_i}{n} = \frac{0 + 1 + 2 + 3}{4} = \frac{6}{4} = 1.5 \][/tex]
[tex]\[ \bar{y} = \frac{\sum y_i}{n} = \frac{127 + 126 + 151 + 169}{4} = \frac{573}{4} = 143.25 \][/tex]
### Step 2: Calculate the Slope (m) and Intercept (b)
The formulas for the slope [tex]\( m \)[/tex] and intercept [tex]\( b \)[/tex] are:
[tex]\[ m = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} \][/tex]
[tex]\[ b = \bar{y} - m\bar{x} \][/tex]
To find [tex]\( m \)[/tex], we first need to compute the components:
[tex]\[ \sum (x_i - \bar{x})(y_i - \bar{y}) = (0-1.5)(127-143.25) + (1-1.5)(126-143.25) + (2-1.5)(151-143.25) + (3-1.5)(169-143.25) \][/tex]
[tex]\[ \sum (x_i - \bar{x})(y_i - \bar{y}) = (-1.5)(-16.25) + (-0.5)(-17.25) + (0.5)(7.75) + (1.5)(25.75) \][/tex]
[tex]\[ \sum (x_i - \bar{x})(y_i - \bar{y}) = 24.375 + 8.625 + 3.875 + 38.625 = 75.5 \][/tex]
Next, we find [tex]\( \sum (x_i - \bar{x})^2 \)[/tex]:
[tex]\[ \sum (x_i - \bar{x})^2 = (0-1.5)^2 + (1-1.5)^2 + (2-1.5)^2 + (3-1.5)^2 \][/tex]
[tex]\[ \sum (x_i - \bar{x})^2 = 2.25 + 0.25 + 0.25 + 2.25 = 5 \][/tex]
Now, calculate the slope [tex]\( m \)[/tex]:
[tex]\[ m = \frac{75.5}{5} = 15.1 \][/tex]
Finally, calculate the intercept [tex]\( b \)[/tex]:
[tex]\[ b = \bar{y} - m\bar{x} = 143.25 - (15.1 \cdot 1.5) = 143.25 - 22.65 = 120.6 \][/tex]
### Step 3: Write the Linear Regression Equation
The linear regression equation is:
[tex]\[ y = 15.1x + 120.6 \][/tex]
### Step 4: Project the Profit for 2021
To find the profit for 2021, note that 2021 is 9 years since 2012 ([tex]\( x = 9 \)[/tex]):
[tex]\[ y = 15.1 \cdot 9 + 120.6 \][/tex]
[tex]\[ y = 135.9 + 120.6 = 256.5 \][/tex]
Rounding to the nearest thousand dollars:
[tex]\[ y \approx 257 \ \text{thousand dollars} \][/tex]
### Final Answer
- Regression Equation: [tex]\( y = 15.1x + 120.6 \)[/tex]
- Projected Profit for 2021: [tex]\( 257 \ \text{thousand dollars} \)[/tex]
Please fill in the answer slots as required:
- Regression Equation: [tex]\( y = 15.1x + 120.6 \)[/tex]
- Final Answer: [tex]\( 257 \ \text{thousand dollars} \)[/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.