Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve this problem, we need to find the linear regression equation of the form [tex]\( y = mx + b \)[/tex], where:
- [tex]\( y \)[/tex] is the profit in thousands of dollars,
- [tex]\( x \)[/tex] is the number of years since 2012,
- [tex]\( m \)[/tex] is the slope of the line,
- [tex]\( b \)[/tex] is the y-intercept of the line.
Given data points:
[tex]\[ (x_i, y_i): \quad (0, 127), (1, 126), (2, 151), (3, 169) \][/tex]
### Step 1: Calculate the Means
First, we calculate the means of the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values.
[tex]\[ \bar{x} = \frac{\sum x_i}{n} = \frac{0 + 1 + 2 + 3}{4} = \frac{6}{4} = 1.5 \][/tex]
[tex]\[ \bar{y} = \frac{\sum y_i}{n} = \frac{127 + 126 + 151 + 169}{4} = \frac{573}{4} = 143.25 \][/tex]
### Step 2: Calculate the Slope (m) and Intercept (b)
The formulas for the slope [tex]\( m \)[/tex] and intercept [tex]\( b \)[/tex] are:
[tex]\[ m = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} \][/tex]
[tex]\[ b = \bar{y} - m\bar{x} \][/tex]
To find [tex]\( m \)[/tex], we first need to compute the components:
[tex]\[ \sum (x_i - \bar{x})(y_i - \bar{y}) = (0-1.5)(127-143.25) + (1-1.5)(126-143.25) + (2-1.5)(151-143.25) + (3-1.5)(169-143.25) \][/tex]
[tex]\[ \sum (x_i - \bar{x})(y_i - \bar{y}) = (-1.5)(-16.25) + (-0.5)(-17.25) + (0.5)(7.75) + (1.5)(25.75) \][/tex]
[tex]\[ \sum (x_i - \bar{x})(y_i - \bar{y}) = 24.375 + 8.625 + 3.875 + 38.625 = 75.5 \][/tex]
Next, we find [tex]\( \sum (x_i - \bar{x})^2 \)[/tex]:
[tex]\[ \sum (x_i - \bar{x})^2 = (0-1.5)^2 + (1-1.5)^2 + (2-1.5)^2 + (3-1.5)^2 \][/tex]
[tex]\[ \sum (x_i - \bar{x})^2 = 2.25 + 0.25 + 0.25 + 2.25 = 5 \][/tex]
Now, calculate the slope [tex]\( m \)[/tex]:
[tex]\[ m = \frac{75.5}{5} = 15.1 \][/tex]
Finally, calculate the intercept [tex]\( b \)[/tex]:
[tex]\[ b = \bar{y} - m\bar{x} = 143.25 - (15.1 \cdot 1.5) = 143.25 - 22.65 = 120.6 \][/tex]
### Step 3: Write the Linear Regression Equation
The linear regression equation is:
[tex]\[ y = 15.1x + 120.6 \][/tex]
### Step 4: Project the Profit for 2021
To find the profit for 2021, note that 2021 is 9 years since 2012 ([tex]\( x = 9 \)[/tex]):
[tex]\[ y = 15.1 \cdot 9 + 120.6 \][/tex]
[tex]\[ y = 135.9 + 120.6 = 256.5 \][/tex]
Rounding to the nearest thousand dollars:
[tex]\[ y \approx 257 \ \text{thousand dollars} \][/tex]
### Final Answer
- Regression Equation: [tex]\( y = 15.1x + 120.6 \)[/tex]
- Projected Profit for 2021: [tex]\( 257 \ \text{thousand dollars} \)[/tex]
Please fill in the answer slots as required:
- Regression Equation: [tex]\( y = 15.1x + 120.6 \)[/tex]
- Final Answer: [tex]\( 257 \ \text{thousand dollars} \)[/tex]
- [tex]\( y \)[/tex] is the profit in thousands of dollars,
- [tex]\( x \)[/tex] is the number of years since 2012,
- [tex]\( m \)[/tex] is the slope of the line,
- [tex]\( b \)[/tex] is the y-intercept of the line.
Given data points:
[tex]\[ (x_i, y_i): \quad (0, 127), (1, 126), (2, 151), (3, 169) \][/tex]
### Step 1: Calculate the Means
First, we calculate the means of the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values.
[tex]\[ \bar{x} = \frac{\sum x_i}{n} = \frac{0 + 1 + 2 + 3}{4} = \frac{6}{4} = 1.5 \][/tex]
[tex]\[ \bar{y} = \frac{\sum y_i}{n} = \frac{127 + 126 + 151 + 169}{4} = \frac{573}{4} = 143.25 \][/tex]
### Step 2: Calculate the Slope (m) and Intercept (b)
The formulas for the slope [tex]\( m \)[/tex] and intercept [tex]\( b \)[/tex] are:
[tex]\[ m = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} \][/tex]
[tex]\[ b = \bar{y} - m\bar{x} \][/tex]
To find [tex]\( m \)[/tex], we first need to compute the components:
[tex]\[ \sum (x_i - \bar{x})(y_i - \bar{y}) = (0-1.5)(127-143.25) + (1-1.5)(126-143.25) + (2-1.5)(151-143.25) + (3-1.5)(169-143.25) \][/tex]
[tex]\[ \sum (x_i - \bar{x})(y_i - \bar{y}) = (-1.5)(-16.25) + (-0.5)(-17.25) + (0.5)(7.75) + (1.5)(25.75) \][/tex]
[tex]\[ \sum (x_i - \bar{x})(y_i - \bar{y}) = 24.375 + 8.625 + 3.875 + 38.625 = 75.5 \][/tex]
Next, we find [tex]\( \sum (x_i - \bar{x})^2 \)[/tex]:
[tex]\[ \sum (x_i - \bar{x})^2 = (0-1.5)^2 + (1-1.5)^2 + (2-1.5)^2 + (3-1.5)^2 \][/tex]
[tex]\[ \sum (x_i - \bar{x})^2 = 2.25 + 0.25 + 0.25 + 2.25 = 5 \][/tex]
Now, calculate the slope [tex]\( m \)[/tex]:
[tex]\[ m = \frac{75.5}{5} = 15.1 \][/tex]
Finally, calculate the intercept [tex]\( b \)[/tex]:
[tex]\[ b = \bar{y} - m\bar{x} = 143.25 - (15.1 \cdot 1.5) = 143.25 - 22.65 = 120.6 \][/tex]
### Step 3: Write the Linear Regression Equation
The linear regression equation is:
[tex]\[ y = 15.1x + 120.6 \][/tex]
### Step 4: Project the Profit for 2021
To find the profit for 2021, note that 2021 is 9 years since 2012 ([tex]\( x = 9 \)[/tex]):
[tex]\[ y = 15.1 \cdot 9 + 120.6 \][/tex]
[tex]\[ y = 135.9 + 120.6 = 256.5 \][/tex]
Rounding to the nearest thousand dollars:
[tex]\[ y \approx 257 \ \text{thousand dollars} \][/tex]
### Final Answer
- Regression Equation: [tex]\( y = 15.1x + 120.6 \)[/tex]
- Projected Profit for 2021: [tex]\( 257 \ \text{thousand dollars} \)[/tex]
Please fill in the answer slots as required:
- Regression Equation: [tex]\( y = 15.1x + 120.6 \)[/tex]
- Final Answer: [tex]\( 257 \ \text{thousand dollars} \)[/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.