At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve this problem, we need to find the linear regression equation of the form [tex]\( y = mx + b \)[/tex], where:
- [tex]\( y \)[/tex] is the profit in thousands of dollars,
- [tex]\( x \)[/tex] is the number of years since 2012,
- [tex]\( m \)[/tex] is the slope of the line,
- [tex]\( b \)[/tex] is the y-intercept of the line.
Given data points:
[tex]\[ (x_i, y_i): \quad (0, 127), (1, 126), (2, 151), (3, 169) \][/tex]
### Step 1: Calculate the Means
First, we calculate the means of the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values.
[tex]\[ \bar{x} = \frac{\sum x_i}{n} = \frac{0 + 1 + 2 + 3}{4} = \frac{6}{4} = 1.5 \][/tex]
[tex]\[ \bar{y} = \frac{\sum y_i}{n} = \frac{127 + 126 + 151 + 169}{4} = \frac{573}{4} = 143.25 \][/tex]
### Step 2: Calculate the Slope (m) and Intercept (b)
The formulas for the slope [tex]\( m \)[/tex] and intercept [tex]\( b \)[/tex] are:
[tex]\[ m = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} \][/tex]
[tex]\[ b = \bar{y} - m\bar{x} \][/tex]
To find [tex]\( m \)[/tex], we first need to compute the components:
[tex]\[ \sum (x_i - \bar{x})(y_i - \bar{y}) = (0-1.5)(127-143.25) + (1-1.5)(126-143.25) + (2-1.5)(151-143.25) + (3-1.5)(169-143.25) \][/tex]
[tex]\[ \sum (x_i - \bar{x})(y_i - \bar{y}) = (-1.5)(-16.25) + (-0.5)(-17.25) + (0.5)(7.75) + (1.5)(25.75) \][/tex]
[tex]\[ \sum (x_i - \bar{x})(y_i - \bar{y}) = 24.375 + 8.625 + 3.875 + 38.625 = 75.5 \][/tex]
Next, we find [tex]\( \sum (x_i - \bar{x})^2 \)[/tex]:
[tex]\[ \sum (x_i - \bar{x})^2 = (0-1.5)^2 + (1-1.5)^2 + (2-1.5)^2 + (3-1.5)^2 \][/tex]
[tex]\[ \sum (x_i - \bar{x})^2 = 2.25 + 0.25 + 0.25 + 2.25 = 5 \][/tex]
Now, calculate the slope [tex]\( m \)[/tex]:
[tex]\[ m = \frac{75.5}{5} = 15.1 \][/tex]
Finally, calculate the intercept [tex]\( b \)[/tex]:
[tex]\[ b = \bar{y} - m\bar{x} = 143.25 - (15.1 \cdot 1.5) = 143.25 - 22.65 = 120.6 \][/tex]
### Step 3: Write the Linear Regression Equation
The linear regression equation is:
[tex]\[ y = 15.1x + 120.6 \][/tex]
### Step 4: Project the Profit for 2021
To find the profit for 2021, note that 2021 is 9 years since 2012 ([tex]\( x = 9 \)[/tex]):
[tex]\[ y = 15.1 \cdot 9 + 120.6 \][/tex]
[tex]\[ y = 135.9 + 120.6 = 256.5 \][/tex]
Rounding to the nearest thousand dollars:
[tex]\[ y \approx 257 \ \text{thousand dollars} \][/tex]
### Final Answer
- Regression Equation: [tex]\( y = 15.1x + 120.6 \)[/tex]
- Projected Profit for 2021: [tex]\( 257 \ \text{thousand dollars} \)[/tex]
Please fill in the answer slots as required:
- Regression Equation: [tex]\( y = 15.1x + 120.6 \)[/tex]
- Final Answer: [tex]\( 257 \ \text{thousand dollars} \)[/tex]
- [tex]\( y \)[/tex] is the profit in thousands of dollars,
- [tex]\( x \)[/tex] is the number of years since 2012,
- [tex]\( m \)[/tex] is the slope of the line,
- [tex]\( b \)[/tex] is the y-intercept of the line.
Given data points:
[tex]\[ (x_i, y_i): \quad (0, 127), (1, 126), (2, 151), (3, 169) \][/tex]
### Step 1: Calculate the Means
First, we calculate the means of the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values.
[tex]\[ \bar{x} = \frac{\sum x_i}{n} = \frac{0 + 1 + 2 + 3}{4} = \frac{6}{4} = 1.5 \][/tex]
[tex]\[ \bar{y} = \frac{\sum y_i}{n} = \frac{127 + 126 + 151 + 169}{4} = \frac{573}{4} = 143.25 \][/tex]
### Step 2: Calculate the Slope (m) and Intercept (b)
The formulas for the slope [tex]\( m \)[/tex] and intercept [tex]\( b \)[/tex] are:
[tex]\[ m = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} \][/tex]
[tex]\[ b = \bar{y} - m\bar{x} \][/tex]
To find [tex]\( m \)[/tex], we first need to compute the components:
[tex]\[ \sum (x_i - \bar{x})(y_i - \bar{y}) = (0-1.5)(127-143.25) + (1-1.5)(126-143.25) + (2-1.5)(151-143.25) + (3-1.5)(169-143.25) \][/tex]
[tex]\[ \sum (x_i - \bar{x})(y_i - \bar{y}) = (-1.5)(-16.25) + (-0.5)(-17.25) + (0.5)(7.75) + (1.5)(25.75) \][/tex]
[tex]\[ \sum (x_i - \bar{x})(y_i - \bar{y}) = 24.375 + 8.625 + 3.875 + 38.625 = 75.5 \][/tex]
Next, we find [tex]\( \sum (x_i - \bar{x})^2 \)[/tex]:
[tex]\[ \sum (x_i - \bar{x})^2 = (0-1.5)^2 + (1-1.5)^2 + (2-1.5)^2 + (3-1.5)^2 \][/tex]
[tex]\[ \sum (x_i - \bar{x})^2 = 2.25 + 0.25 + 0.25 + 2.25 = 5 \][/tex]
Now, calculate the slope [tex]\( m \)[/tex]:
[tex]\[ m = \frac{75.5}{5} = 15.1 \][/tex]
Finally, calculate the intercept [tex]\( b \)[/tex]:
[tex]\[ b = \bar{y} - m\bar{x} = 143.25 - (15.1 \cdot 1.5) = 143.25 - 22.65 = 120.6 \][/tex]
### Step 3: Write the Linear Regression Equation
The linear regression equation is:
[tex]\[ y = 15.1x + 120.6 \][/tex]
### Step 4: Project the Profit for 2021
To find the profit for 2021, note that 2021 is 9 years since 2012 ([tex]\( x = 9 \)[/tex]):
[tex]\[ y = 15.1 \cdot 9 + 120.6 \][/tex]
[tex]\[ y = 135.9 + 120.6 = 256.5 \][/tex]
Rounding to the nearest thousand dollars:
[tex]\[ y \approx 257 \ \text{thousand dollars} \][/tex]
### Final Answer
- Regression Equation: [tex]\( y = 15.1x + 120.6 \)[/tex]
- Projected Profit for 2021: [tex]\( 257 \ \text{thousand dollars} \)[/tex]
Please fill in the answer slots as required:
- Regression Equation: [tex]\( y = 15.1x + 120.6 \)[/tex]
- Final Answer: [tex]\( 257 \ \text{thousand dollars} \)[/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.