Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Consider the function [tex]\( f(t) = \sqrt{3t - 9} \)[/tex].

To ensure the expression inside the square root is non-negative, solve the inequality:
[tex]\[ 3t - 9 \geq 0 \][/tex]

Solve for [tex]\( t \)[/tex].


Sagot :

To determine the domain of the function [tex]\( f(t) = \sqrt{3t - 9} \)[/tex], we need to make sure that the expression inside the square root, [tex]\( 3t - 9 \)[/tex], is non-negative (i.e., greater than or equal to zero). This is because the square root function is only defined for non-negative numbers.

Here are the steps to find the domain:

1. Define the inequality:
[tex]\[ 3t - 9 \geq 0 \][/tex]

2. Solve the inequality for [tex]\( t \)[/tex]:
- Add 9 to both sides to isolate the term with [tex]\( t \)[/tex]:
[tex]\[ 3t \geq 9 \][/tex]
- Divide both sides by 3 to solve for [tex]\( t \)[/tex]:
[tex]\[ t \geq \frac{9}{3} \][/tex]
[tex]\[ t \geq 3 \][/tex]

So, for the function [tex]\( f(t) = \sqrt{3t - 9} \)[/tex] to be defined, [tex]\( t \)[/tex] must be greater than or equal to 3.

Therefore, the domain of the function is:
[tex]\[ t \geq 3 \][/tex]
In interval notation, the domain can be expressed as:
[tex]\[ [3, \infty) \][/tex]

Thus, the minimum value of [tex]\( t \)[/tex] for which the function [tex]\( f(t) = \sqrt{3t - 9} \)[/tex] is defined is [tex]\( 3 \)[/tex].