Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Certainly! Let's determine the phase shift for each of the sinusoidal curves given.
### Part (a):
The equation given is:
[tex]\[ y = 3 \sin \left(5\left(x - \frac{\pi}{4}\right)\right) + 2 \][/tex]
To find the phase shift, let's consider the general form of a sine function:
[tex]\[ y = a \sin(b(x - c)) + d \][/tex]
where:
- [tex]\( a \)[/tex] is the amplitude (vertical stretch/compression),
- [tex]\( b \)[/tex] is the frequency (horizontal stretch/compression),
- [tex]\( c \)[/tex] is the phase shift (horizontal translation),
- [tex]\( d \)[/tex] is the vertical shift.
In the given equation [tex]\( y = 3 \sin \left(5\left(x - \frac{\pi}{4}\right)\right) + 2 \)[/tex]:
- The coefficient [tex]\( a = 3 \)[/tex] (this represents the amplitude but doesn't affect the phase shift),
- The frequency [tex]\( b = 5 \)[/tex],
- The phase shift [tex]\( c = \frac{\pi}{4} \)[/tex],
- The vertical shift [tex]\( d = 2 \)[/tex].
The phase shift for a sine function is determined by the term inside the parenthesis, [tex]\( x - c \)[/tex]. Here, [tex]\( c = \frac{\pi}{4} \)[/tex]. Thus, the phase shift is:
[tex]\[ \frac{\pi}{4} \quad \text{to the right} \][/tex]
### Part (b):
The equation given is:
[tex]\[ y = -2 \cos \left(\frac{1}{3}(x + 8)\right) + 1 \][/tex]
To find the phase shift, let's consider the general form of a cosine function:
[tex]\[ y = a \cos(b(x - c)) + d \][/tex]
where:
- [tex]\( a \)[/tex] is the amplitude (vertical stretch/compression),
- [tex]\( b \)[/tex] is the frequency (horizontal stretch/compression),
- [tex]\( c \)[/tex] is the phase shift (horizontal translation),
- [tex]\( d \)[/tex] is the vertical shift.
In the given equation [tex]\( y = -2 \cos \left(\frac{1}{3}(x + 8)\right) + 1 \)[/tex]:
- The coefficient [tex]\( a = -2 \)[/tex] (this represents the amplitude but doesn't affect the phase shift),
- The frequency [tex]\( b = \frac{1}{3} \)[/tex],
- The phase shift can be tricky here, as the expression inside the cosine is [tex]\( b(x + 8) \)[/tex], we need to rewrite it to compare it with the standard form [tex]\( b(x - c) \)[/tex].
We can rewrite:
[tex]\[ \frac{1}{3} (x + 8) = \frac{1}{3} x + \frac{1}{3} \cdot 8 \][/tex]
which simplifies to:
[tex]\[ \frac{1}{3} x + \frac{8}{3} \][/tex]
Therefore, we see that the phase shift term here is [tex]\( +\frac{8}{3} \)[/tex]. This means the phase shift is effectively [tex]\( -8 \)[/tex] after taking out the [tex]\( \frac{1}{3} \)[/tex].
Thus, the phase shift is:
[tex]\[ -8 \quad \text{to the left} \][/tex]
### Summary:
- The phase shift for [tex]\( y = 3 \sin \left(5\left(x - \frac{\pi}{4}\right)\right) + 2 \)[/tex] is [tex]\( \frac{\pi}{4} \)[/tex] to the right.
- The phase shift for [tex]\( y = -2 \cos \left(\frac{1}{3}(x + 8)\right) + 1 \)[/tex] is [tex]\( -8 \)[/tex] to the left.
### Part (a):
The equation given is:
[tex]\[ y = 3 \sin \left(5\left(x - \frac{\pi}{4}\right)\right) + 2 \][/tex]
To find the phase shift, let's consider the general form of a sine function:
[tex]\[ y = a \sin(b(x - c)) + d \][/tex]
where:
- [tex]\( a \)[/tex] is the amplitude (vertical stretch/compression),
- [tex]\( b \)[/tex] is the frequency (horizontal stretch/compression),
- [tex]\( c \)[/tex] is the phase shift (horizontal translation),
- [tex]\( d \)[/tex] is the vertical shift.
In the given equation [tex]\( y = 3 \sin \left(5\left(x - \frac{\pi}{4}\right)\right) + 2 \)[/tex]:
- The coefficient [tex]\( a = 3 \)[/tex] (this represents the amplitude but doesn't affect the phase shift),
- The frequency [tex]\( b = 5 \)[/tex],
- The phase shift [tex]\( c = \frac{\pi}{4} \)[/tex],
- The vertical shift [tex]\( d = 2 \)[/tex].
The phase shift for a sine function is determined by the term inside the parenthesis, [tex]\( x - c \)[/tex]. Here, [tex]\( c = \frac{\pi}{4} \)[/tex]. Thus, the phase shift is:
[tex]\[ \frac{\pi}{4} \quad \text{to the right} \][/tex]
### Part (b):
The equation given is:
[tex]\[ y = -2 \cos \left(\frac{1}{3}(x + 8)\right) + 1 \][/tex]
To find the phase shift, let's consider the general form of a cosine function:
[tex]\[ y = a \cos(b(x - c)) + d \][/tex]
where:
- [tex]\( a \)[/tex] is the amplitude (vertical stretch/compression),
- [tex]\( b \)[/tex] is the frequency (horizontal stretch/compression),
- [tex]\( c \)[/tex] is the phase shift (horizontal translation),
- [tex]\( d \)[/tex] is the vertical shift.
In the given equation [tex]\( y = -2 \cos \left(\frac{1}{3}(x + 8)\right) + 1 \)[/tex]:
- The coefficient [tex]\( a = -2 \)[/tex] (this represents the amplitude but doesn't affect the phase shift),
- The frequency [tex]\( b = \frac{1}{3} \)[/tex],
- The phase shift can be tricky here, as the expression inside the cosine is [tex]\( b(x + 8) \)[/tex], we need to rewrite it to compare it with the standard form [tex]\( b(x - c) \)[/tex].
We can rewrite:
[tex]\[ \frac{1}{3} (x + 8) = \frac{1}{3} x + \frac{1}{3} \cdot 8 \][/tex]
which simplifies to:
[tex]\[ \frac{1}{3} x + \frac{8}{3} \][/tex]
Therefore, we see that the phase shift term here is [tex]\( +\frac{8}{3} \)[/tex]. This means the phase shift is effectively [tex]\( -8 \)[/tex] after taking out the [tex]\( \frac{1}{3} \)[/tex].
Thus, the phase shift is:
[tex]\[ -8 \quad \text{to the left} \][/tex]
### Summary:
- The phase shift for [tex]\( y = 3 \sin \left(5\left(x - \frac{\pi}{4}\right)\right) + 2 \)[/tex] is [tex]\( \frac{\pi}{4} \)[/tex] to the right.
- The phase shift for [tex]\( y = -2 \cos \left(\frac{1}{3}(x + 8)\right) + 1 \)[/tex] is [tex]\( -8 \)[/tex] to the left.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.