Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly! Let's determine the phase shift for each of the sinusoidal curves given.
### Part (a):
The equation given is:
[tex]\[ y = 3 \sin \left(5\left(x - \frac{\pi}{4}\right)\right) + 2 \][/tex]
To find the phase shift, let's consider the general form of a sine function:
[tex]\[ y = a \sin(b(x - c)) + d \][/tex]
where:
- [tex]\( a \)[/tex] is the amplitude (vertical stretch/compression),
- [tex]\( b \)[/tex] is the frequency (horizontal stretch/compression),
- [tex]\( c \)[/tex] is the phase shift (horizontal translation),
- [tex]\( d \)[/tex] is the vertical shift.
In the given equation [tex]\( y = 3 \sin \left(5\left(x - \frac{\pi}{4}\right)\right) + 2 \)[/tex]:
- The coefficient [tex]\( a = 3 \)[/tex] (this represents the amplitude but doesn't affect the phase shift),
- The frequency [tex]\( b = 5 \)[/tex],
- The phase shift [tex]\( c = \frac{\pi}{4} \)[/tex],
- The vertical shift [tex]\( d = 2 \)[/tex].
The phase shift for a sine function is determined by the term inside the parenthesis, [tex]\( x - c \)[/tex]. Here, [tex]\( c = \frac{\pi}{4} \)[/tex]. Thus, the phase shift is:
[tex]\[ \frac{\pi}{4} \quad \text{to the right} \][/tex]
### Part (b):
The equation given is:
[tex]\[ y = -2 \cos \left(\frac{1}{3}(x + 8)\right) + 1 \][/tex]
To find the phase shift, let's consider the general form of a cosine function:
[tex]\[ y = a \cos(b(x - c)) + d \][/tex]
where:
- [tex]\( a \)[/tex] is the amplitude (vertical stretch/compression),
- [tex]\( b \)[/tex] is the frequency (horizontal stretch/compression),
- [tex]\( c \)[/tex] is the phase shift (horizontal translation),
- [tex]\( d \)[/tex] is the vertical shift.
In the given equation [tex]\( y = -2 \cos \left(\frac{1}{3}(x + 8)\right) + 1 \)[/tex]:
- The coefficient [tex]\( a = -2 \)[/tex] (this represents the amplitude but doesn't affect the phase shift),
- The frequency [tex]\( b = \frac{1}{3} \)[/tex],
- The phase shift can be tricky here, as the expression inside the cosine is [tex]\( b(x + 8) \)[/tex], we need to rewrite it to compare it with the standard form [tex]\( b(x - c) \)[/tex].
We can rewrite:
[tex]\[ \frac{1}{3} (x + 8) = \frac{1}{3} x + \frac{1}{3} \cdot 8 \][/tex]
which simplifies to:
[tex]\[ \frac{1}{3} x + \frac{8}{3} \][/tex]
Therefore, we see that the phase shift term here is [tex]\( +\frac{8}{3} \)[/tex]. This means the phase shift is effectively [tex]\( -8 \)[/tex] after taking out the [tex]\( \frac{1}{3} \)[/tex].
Thus, the phase shift is:
[tex]\[ -8 \quad \text{to the left} \][/tex]
### Summary:
- The phase shift for [tex]\( y = 3 \sin \left(5\left(x - \frac{\pi}{4}\right)\right) + 2 \)[/tex] is [tex]\( \frac{\pi}{4} \)[/tex] to the right.
- The phase shift for [tex]\( y = -2 \cos \left(\frac{1}{3}(x + 8)\right) + 1 \)[/tex] is [tex]\( -8 \)[/tex] to the left.
### Part (a):
The equation given is:
[tex]\[ y = 3 \sin \left(5\left(x - \frac{\pi}{4}\right)\right) + 2 \][/tex]
To find the phase shift, let's consider the general form of a sine function:
[tex]\[ y = a \sin(b(x - c)) + d \][/tex]
where:
- [tex]\( a \)[/tex] is the amplitude (vertical stretch/compression),
- [tex]\( b \)[/tex] is the frequency (horizontal stretch/compression),
- [tex]\( c \)[/tex] is the phase shift (horizontal translation),
- [tex]\( d \)[/tex] is the vertical shift.
In the given equation [tex]\( y = 3 \sin \left(5\left(x - \frac{\pi}{4}\right)\right) + 2 \)[/tex]:
- The coefficient [tex]\( a = 3 \)[/tex] (this represents the amplitude but doesn't affect the phase shift),
- The frequency [tex]\( b = 5 \)[/tex],
- The phase shift [tex]\( c = \frac{\pi}{4} \)[/tex],
- The vertical shift [tex]\( d = 2 \)[/tex].
The phase shift for a sine function is determined by the term inside the parenthesis, [tex]\( x - c \)[/tex]. Here, [tex]\( c = \frac{\pi}{4} \)[/tex]. Thus, the phase shift is:
[tex]\[ \frac{\pi}{4} \quad \text{to the right} \][/tex]
### Part (b):
The equation given is:
[tex]\[ y = -2 \cos \left(\frac{1}{3}(x + 8)\right) + 1 \][/tex]
To find the phase shift, let's consider the general form of a cosine function:
[tex]\[ y = a \cos(b(x - c)) + d \][/tex]
where:
- [tex]\( a \)[/tex] is the amplitude (vertical stretch/compression),
- [tex]\( b \)[/tex] is the frequency (horizontal stretch/compression),
- [tex]\( c \)[/tex] is the phase shift (horizontal translation),
- [tex]\( d \)[/tex] is the vertical shift.
In the given equation [tex]\( y = -2 \cos \left(\frac{1}{3}(x + 8)\right) + 1 \)[/tex]:
- The coefficient [tex]\( a = -2 \)[/tex] (this represents the amplitude but doesn't affect the phase shift),
- The frequency [tex]\( b = \frac{1}{3} \)[/tex],
- The phase shift can be tricky here, as the expression inside the cosine is [tex]\( b(x + 8) \)[/tex], we need to rewrite it to compare it with the standard form [tex]\( b(x - c) \)[/tex].
We can rewrite:
[tex]\[ \frac{1}{3} (x + 8) = \frac{1}{3} x + \frac{1}{3} \cdot 8 \][/tex]
which simplifies to:
[tex]\[ \frac{1}{3} x + \frac{8}{3} \][/tex]
Therefore, we see that the phase shift term here is [tex]\( +\frac{8}{3} \)[/tex]. This means the phase shift is effectively [tex]\( -8 \)[/tex] after taking out the [tex]\( \frac{1}{3} \)[/tex].
Thus, the phase shift is:
[tex]\[ -8 \quad \text{to the left} \][/tex]
### Summary:
- The phase shift for [tex]\( y = 3 \sin \left(5\left(x - \frac{\pi}{4}\right)\right) + 2 \)[/tex] is [tex]\( \frac{\pi}{4} \)[/tex] to the right.
- The phase shift for [tex]\( y = -2 \cos \left(\frac{1}{3}(x + 8)\right) + 1 \)[/tex] is [tex]\( -8 \)[/tex] to the left.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.