Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Solve for [tex]\( x \)[/tex]:

[tex]\[ \log_{\sqrt{5}}(x) = 2 \][/tex]


Sagot :

To solve the equation [tex]\(\log _{\sqrt{5}}(x) = 2\)[/tex], we will perform the following steps:

1. Understand the meaning of the logarithmic equation:
The equation [tex]\(\log _{\sqrt{5}}(x) = 2\)[/tex] means that [tex]\(\sqrt{5}\)[/tex] raised to the power of [tex]\(2\)[/tex] results in [tex]\(x\)[/tex].
In general, if [tex]\( \log_b(a)=c \)[/tex], it means [tex]\( b^c = a \)[/tex].

2. Convert the logarithmic equation to an exponential form:
Given [tex]\(\log _{\sqrt{5}}(x) = 2\)[/tex], we can rewrite it as:
[tex]\[ (\sqrt{5})^2 = x \][/tex]

3. Simplify the right-hand side:
We need to calculate [tex]\((\sqrt{5})^2\)[/tex]. By the properties of exponents, we know:
[tex]\[ (\sqrt{5})^2 = 5 \][/tex]

4. Write the final solution:
Hence, we have:
[tex]\[ x = 5 \][/tex]

Therefore, the solution to the equation [tex]\(\log _{\sqrt{5}}(x) = 2\)[/tex] is [tex]\(x = 5\)[/tex].