At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which quadratic function has exactly one real solution, we need to evaluate the discriminant of each quadratic equation. The discriminant of a quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex] is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
A quadratic equation has exactly one real solution if and only if its discriminant is equal to zero. Let's evaluate the discriminants for the given functions:
1. For the function [tex]\( f(x) = -4x^2 + 9x \)[/tex]:
[tex]\[ a = -4, \quad b = 9, \quad c = 0 \][/tex]
[tex]\[ \Delta_A = 9^2 - 4(-4)(0) = 81 \][/tex]
Since [tex]\(\Delta_A = 81 \neq 0\)[/tex], the function [tex]\( f(x) = -4x^2 + 9x \)[/tex] does not have exactly one real solution.
2. For the function [tex]\( f(x) = 6x^2 + 11 \)[/tex]:
[tex]\[ a = 6, \quad b = 0, \quad c = 11 \][/tex]
[tex]\[ \Delta_B = 0^2 - 4(6)(11) = -264 \][/tex]
Since [tex]\(\Delta_B = -264 \neq 0\)[/tex], the function [tex]\( f(x) = 6x^2 + 11 \)[/tex] does not have exactly one real solution.
3. For the function [tex]\( f(x) = 2x^2 + 4x - 5 \)[/tex]:
[tex]\[ a = 2, \quad b = 4, \quad c = -5 \][/tex]
[tex]\[ \Delta_C = 4^2 - 4(2)(-5) = 16 + 40 = 56 \][/tex]
Since [tex]\(\Delta_C = 56 \neq 0\)[/tex], the function [tex]\( f(x) = 2x^2 + 4x - 5 \)[/tex] does not have exactly one real solution.
4. For the function [tex]\( f(x) = -3x^2 + 30x - 75 \)[/tex]:
[tex]\[ a = -3, \quad b = 30, \quad c = -75 \][/tex]
[tex]\[ \Delta_D = 30^2 - 4(-3)(-75) = 900 - 900 = 0 \][/tex]
Since [tex]\(\Delta_D = 0\)[/tex], the function [tex]\( f(x) = -3x^2 + 30x - 75 \)[/tex] has exactly one real solution.
Thus, the correct answer is:
[tex]\[ \boxed{D} \][/tex]
[tex]\[ \Delta = b^2 - 4ac \][/tex]
A quadratic equation has exactly one real solution if and only if its discriminant is equal to zero. Let's evaluate the discriminants for the given functions:
1. For the function [tex]\( f(x) = -4x^2 + 9x \)[/tex]:
[tex]\[ a = -4, \quad b = 9, \quad c = 0 \][/tex]
[tex]\[ \Delta_A = 9^2 - 4(-4)(0) = 81 \][/tex]
Since [tex]\(\Delta_A = 81 \neq 0\)[/tex], the function [tex]\( f(x) = -4x^2 + 9x \)[/tex] does not have exactly one real solution.
2. For the function [tex]\( f(x) = 6x^2 + 11 \)[/tex]:
[tex]\[ a = 6, \quad b = 0, \quad c = 11 \][/tex]
[tex]\[ \Delta_B = 0^2 - 4(6)(11) = -264 \][/tex]
Since [tex]\(\Delta_B = -264 \neq 0\)[/tex], the function [tex]\( f(x) = 6x^2 + 11 \)[/tex] does not have exactly one real solution.
3. For the function [tex]\( f(x) = 2x^2 + 4x - 5 \)[/tex]:
[tex]\[ a = 2, \quad b = 4, \quad c = -5 \][/tex]
[tex]\[ \Delta_C = 4^2 - 4(2)(-5) = 16 + 40 = 56 \][/tex]
Since [tex]\(\Delta_C = 56 \neq 0\)[/tex], the function [tex]\( f(x) = 2x^2 + 4x - 5 \)[/tex] does not have exactly one real solution.
4. For the function [tex]\( f(x) = -3x^2 + 30x - 75 \)[/tex]:
[tex]\[ a = -3, \quad b = 30, \quad c = -75 \][/tex]
[tex]\[ \Delta_D = 30^2 - 4(-3)(-75) = 900 - 900 = 0 \][/tex]
Since [tex]\(\Delta_D = 0\)[/tex], the function [tex]\( f(x) = -3x^2 + 30x - 75 \)[/tex] has exactly one real solution.
Thus, the correct answer is:
[tex]\[ \boxed{D} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.