Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine which function represents [tex]\( g(x) \)[/tex] given that it has a [tex]\( y \)[/tex]-intercept of [tex]\(-2\)[/tex], let’s analyze each of the provided functions step-by-step.
### Step 1: Understanding the Y-Intercept
The [tex]\( y \)[/tex]-intercept of a function is the value of the function when [tex]\( x = 0 \)[/tex]. Therefore, we need to check what [tex]\( g(0) \)[/tex] is for each given option.
### Step 2: Analyzing Each Transformation
#### Option A: [tex]\( g(x) = f(x+2) \)[/tex]
For [tex]\( g(x) = f(x+2) \)[/tex], when we substitute [tex]\( x = 0 \)[/tex], we get:
[tex]\[ g(0) = f(0+2) = f(2) \][/tex]
This transformation shifts the function horizontally but does not affect the [tex]\( y \)[/tex]-intercept of the original function [tex]\( f(x) \)[/tex] directly. Hence, the [tex]\( y \)[/tex]-intercept remains whatever it was for [tex]\( f(x) \)[/tex], not necessarily [tex]\(-2\)[/tex].
#### Option B: [tex]\( g(x) = f(x) - 5 \)[/tex]
For [tex]\( g(x) = f(x) - 5 \)[/tex], when we substitute [tex]\( x = 0 \)[/tex], we get:
[tex]\[ g(0) = f(0) - 5 \][/tex]
This transformation shifts the entire function vertically down by 5 units. If the original [tex]\( y \)[/tex]-intercept of [tex]\( f(x) \)[/tex] is [tex]\( y_0 \)[/tex], then the new [tex]\( y \)[/tex]-intercept will be [tex]\( y_0 - 5 \)[/tex]. This does not guarantee a [tex]\( y \)[/tex]-intercept of [tex]\(-2\)[/tex] unless [tex]\( y_0 \)[/tex] was [tex]\(3\)[/tex].
#### Option C: [tex]\( g(x) = f(x-5) \)[/tex]
For [tex]\( g(x) = f(x-5) \)[/tex], when we substitute [tex]\( x = 0 \)[/tex], we get:
[tex]\[ g(0) = f(0-5) = f(-5) \][/tex]
This transformation shifts the function horizontally but does not affect the [tex]\( y \)[/tex]-intercept of the original function [tex]\( f(x) \)[/tex] directly. Hence, the [tex]\( y \)[/tex]-intercept remains whatever it was for [tex]\( f(x) \)[/tex], not necessarily [tex]\(-2\)[/tex].
#### Option D: [tex]\( g(x) = f(x) - 2 \)[/tex]
For [tex]\( g(x) = f(x) - 2 \)[/tex], when we substitute [tex]\( x = 0 \)[/tex], we get:
[tex]\[ g(0) = f(0) - 2 \][/tex]
This transformation shifts the entire function vertically down by 2 units. If the original [tex]\( y \)[/tex]-intercept of [tex]\( f(x) \)[/tex] is [tex]\( y_0 \)[/tex], then the new [tex]\( y \)[/tex]-intercept will be [tex]\( y_0 - 2 \)[/tex]. Therefore, if the original [tex]\( y \)[/tex]-intercept of [tex]\( f(x) \)[/tex] was [tex]\( 0 \)[/tex], the new [tex]\( y \)[/tex]-intercept becomes [tex]\( -2 \)[/tex], which matches the given condition.
### Conclusion
The only transformation that results in a [tex]\( y \)[/tex]-intercept of [tex]\(-2\)[/tex] is option D:
[tex]\[ \boxed{g(x) = f(x) - 2} \][/tex]
### Step 1: Understanding the Y-Intercept
The [tex]\( y \)[/tex]-intercept of a function is the value of the function when [tex]\( x = 0 \)[/tex]. Therefore, we need to check what [tex]\( g(0) \)[/tex] is for each given option.
### Step 2: Analyzing Each Transformation
#### Option A: [tex]\( g(x) = f(x+2) \)[/tex]
For [tex]\( g(x) = f(x+2) \)[/tex], when we substitute [tex]\( x = 0 \)[/tex], we get:
[tex]\[ g(0) = f(0+2) = f(2) \][/tex]
This transformation shifts the function horizontally but does not affect the [tex]\( y \)[/tex]-intercept of the original function [tex]\( f(x) \)[/tex] directly. Hence, the [tex]\( y \)[/tex]-intercept remains whatever it was for [tex]\( f(x) \)[/tex], not necessarily [tex]\(-2\)[/tex].
#### Option B: [tex]\( g(x) = f(x) - 5 \)[/tex]
For [tex]\( g(x) = f(x) - 5 \)[/tex], when we substitute [tex]\( x = 0 \)[/tex], we get:
[tex]\[ g(0) = f(0) - 5 \][/tex]
This transformation shifts the entire function vertically down by 5 units. If the original [tex]\( y \)[/tex]-intercept of [tex]\( f(x) \)[/tex] is [tex]\( y_0 \)[/tex], then the new [tex]\( y \)[/tex]-intercept will be [tex]\( y_0 - 5 \)[/tex]. This does not guarantee a [tex]\( y \)[/tex]-intercept of [tex]\(-2\)[/tex] unless [tex]\( y_0 \)[/tex] was [tex]\(3\)[/tex].
#### Option C: [tex]\( g(x) = f(x-5) \)[/tex]
For [tex]\( g(x) = f(x-5) \)[/tex], when we substitute [tex]\( x = 0 \)[/tex], we get:
[tex]\[ g(0) = f(0-5) = f(-5) \][/tex]
This transformation shifts the function horizontally but does not affect the [tex]\( y \)[/tex]-intercept of the original function [tex]\( f(x) \)[/tex] directly. Hence, the [tex]\( y \)[/tex]-intercept remains whatever it was for [tex]\( f(x) \)[/tex], not necessarily [tex]\(-2\)[/tex].
#### Option D: [tex]\( g(x) = f(x) - 2 \)[/tex]
For [tex]\( g(x) = f(x) - 2 \)[/tex], when we substitute [tex]\( x = 0 \)[/tex], we get:
[tex]\[ g(0) = f(0) - 2 \][/tex]
This transformation shifts the entire function vertically down by 2 units. If the original [tex]\( y \)[/tex]-intercept of [tex]\( f(x) \)[/tex] is [tex]\( y_0 \)[/tex], then the new [tex]\( y \)[/tex]-intercept will be [tex]\( y_0 - 2 \)[/tex]. Therefore, if the original [tex]\( y \)[/tex]-intercept of [tex]\( f(x) \)[/tex] was [tex]\( 0 \)[/tex], the new [tex]\( y \)[/tex]-intercept becomes [tex]\( -2 \)[/tex], which matches the given condition.
### Conclusion
The only transformation that results in a [tex]\( y \)[/tex]-intercept of [tex]\(-2\)[/tex] is option D:
[tex]\[ \boxed{g(x) = f(x) - 2} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.