Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine which function represents [tex]\( g(x) \)[/tex] given that it has a [tex]\( y \)[/tex]-intercept of [tex]\(-2\)[/tex], let’s analyze each of the provided functions step-by-step.
### Step 1: Understanding the Y-Intercept
The [tex]\( y \)[/tex]-intercept of a function is the value of the function when [tex]\( x = 0 \)[/tex]. Therefore, we need to check what [tex]\( g(0) \)[/tex] is for each given option.
### Step 2: Analyzing Each Transformation
#### Option A: [tex]\( g(x) = f(x+2) \)[/tex]
For [tex]\( g(x) = f(x+2) \)[/tex], when we substitute [tex]\( x = 0 \)[/tex], we get:
[tex]\[ g(0) = f(0+2) = f(2) \][/tex]
This transformation shifts the function horizontally but does not affect the [tex]\( y \)[/tex]-intercept of the original function [tex]\( f(x) \)[/tex] directly. Hence, the [tex]\( y \)[/tex]-intercept remains whatever it was for [tex]\( f(x) \)[/tex], not necessarily [tex]\(-2\)[/tex].
#### Option B: [tex]\( g(x) = f(x) - 5 \)[/tex]
For [tex]\( g(x) = f(x) - 5 \)[/tex], when we substitute [tex]\( x = 0 \)[/tex], we get:
[tex]\[ g(0) = f(0) - 5 \][/tex]
This transformation shifts the entire function vertically down by 5 units. If the original [tex]\( y \)[/tex]-intercept of [tex]\( f(x) \)[/tex] is [tex]\( y_0 \)[/tex], then the new [tex]\( y \)[/tex]-intercept will be [tex]\( y_0 - 5 \)[/tex]. This does not guarantee a [tex]\( y \)[/tex]-intercept of [tex]\(-2\)[/tex] unless [tex]\( y_0 \)[/tex] was [tex]\(3\)[/tex].
#### Option C: [tex]\( g(x) = f(x-5) \)[/tex]
For [tex]\( g(x) = f(x-5) \)[/tex], when we substitute [tex]\( x = 0 \)[/tex], we get:
[tex]\[ g(0) = f(0-5) = f(-5) \][/tex]
This transformation shifts the function horizontally but does not affect the [tex]\( y \)[/tex]-intercept of the original function [tex]\( f(x) \)[/tex] directly. Hence, the [tex]\( y \)[/tex]-intercept remains whatever it was for [tex]\( f(x) \)[/tex], not necessarily [tex]\(-2\)[/tex].
#### Option D: [tex]\( g(x) = f(x) - 2 \)[/tex]
For [tex]\( g(x) = f(x) - 2 \)[/tex], when we substitute [tex]\( x = 0 \)[/tex], we get:
[tex]\[ g(0) = f(0) - 2 \][/tex]
This transformation shifts the entire function vertically down by 2 units. If the original [tex]\( y \)[/tex]-intercept of [tex]\( f(x) \)[/tex] is [tex]\( y_0 \)[/tex], then the new [tex]\( y \)[/tex]-intercept will be [tex]\( y_0 - 2 \)[/tex]. Therefore, if the original [tex]\( y \)[/tex]-intercept of [tex]\( f(x) \)[/tex] was [tex]\( 0 \)[/tex], the new [tex]\( y \)[/tex]-intercept becomes [tex]\( -2 \)[/tex], which matches the given condition.
### Conclusion
The only transformation that results in a [tex]\( y \)[/tex]-intercept of [tex]\(-2\)[/tex] is option D:
[tex]\[ \boxed{g(x) = f(x) - 2} \][/tex]
### Step 1: Understanding the Y-Intercept
The [tex]\( y \)[/tex]-intercept of a function is the value of the function when [tex]\( x = 0 \)[/tex]. Therefore, we need to check what [tex]\( g(0) \)[/tex] is for each given option.
### Step 2: Analyzing Each Transformation
#### Option A: [tex]\( g(x) = f(x+2) \)[/tex]
For [tex]\( g(x) = f(x+2) \)[/tex], when we substitute [tex]\( x = 0 \)[/tex], we get:
[tex]\[ g(0) = f(0+2) = f(2) \][/tex]
This transformation shifts the function horizontally but does not affect the [tex]\( y \)[/tex]-intercept of the original function [tex]\( f(x) \)[/tex] directly. Hence, the [tex]\( y \)[/tex]-intercept remains whatever it was for [tex]\( f(x) \)[/tex], not necessarily [tex]\(-2\)[/tex].
#### Option B: [tex]\( g(x) = f(x) - 5 \)[/tex]
For [tex]\( g(x) = f(x) - 5 \)[/tex], when we substitute [tex]\( x = 0 \)[/tex], we get:
[tex]\[ g(0) = f(0) - 5 \][/tex]
This transformation shifts the entire function vertically down by 5 units. If the original [tex]\( y \)[/tex]-intercept of [tex]\( f(x) \)[/tex] is [tex]\( y_0 \)[/tex], then the new [tex]\( y \)[/tex]-intercept will be [tex]\( y_0 - 5 \)[/tex]. This does not guarantee a [tex]\( y \)[/tex]-intercept of [tex]\(-2\)[/tex] unless [tex]\( y_0 \)[/tex] was [tex]\(3\)[/tex].
#### Option C: [tex]\( g(x) = f(x-5) \)[/tex]
For [tex]\( g(x) = f(x-5) \)[/tex], when we substitute [tex]\( x = 0 \)[/tex], we get:
[tex]\[ g(0) = f(0-5) = f(-5) \][/tex]
This transformation shifts the function horizontally but does not affect the [tex]\( y \)[/tex]-intercept of the original function [tex]\( f(x) \)[/tex] directly. Hence, the [tex]\( y \)[/tex]-intercept remains whatever it was for [tex]\( f(x) \)[/tex], not necessarily [tex]\(-2\)[/tex].
#### Option D: [tex]\( g(x) = f(x) - 2 \)[/tex]
For [tex]\( g(x) = f(x) - 2 \)[/tex], when we substitute [tex]\( x = 0 \)[/tex], we get:
[tex]\[ g(0) = f(0) - 2 \][/tex]
This transformation shifts the entire function vertically down by 2 units. If the original [tex]\( y \)[/tex]-intercept of [tex]\( f(x) \)[/tex] is [tex]\( y_0 \)[/tex], then the new [tex]\( y \)[/tex]-intercept will be [tex]\( y_0 - 2 \)[/tex]. Therefore, if the original [tex]\( y \)[/tex]-intercept of [tex]\( f(x) \)[/tex] was [tex]\( 0 \)[/tex], the new [tex]\( y \)[/tex]-intercept becomes [tex]\( -2 \)[/tex], which matches the given condition.
### Conclusion
The only transformation that results in a [tex]\( y \)[/tex]-intercept of [tex]\(-2\)[/tex] is option D:
[tex]\[ \boxed{g(x) = f(x) - 2} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.