Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

The function [tex]\( g(x) \)[/tex] is a transformation of [tex]\( f(x) \)[/tex]. If [tex]\( g(x) \)[/tex] has a [tex]\( y \)[/tex]-intercept of -2, which of the following functions could represent [tex]\( g(x) \)[/tex]?

A. [tex]\( g(x) = f(x + 2) \)[/tex]

B. [tex]\( g(x) = f(x) - 5 \)[/tex]

C. [tex]\( g(x) = f(x - 5) \)[/tex]

D. [tex]\( g(x) = f(x) - 2 \)[/tex]


Sagot :

To determine which function represents [tex]\( g(x) \)[/tex] given that it has a [tex]\( y \)[/tex]-intercept of [tex]\(-2\)[/tex], let’s analyze each of the provided functions step-by-step.

### Step 1: Understanding the Y-Intercept
The [tex]\( y \)[/tex]-intercept of a function is the value of the function when [tex]\( x = 0 \)[/tex]. Therefore, we need to check what [tex]\( g(0) \)[/tex] is for each given option.

### Step 2: Analyzing Each Transformation

#### Option A: [tex]\( g(x) = f(x+2) \)[/tex]
For [tex]\( g(x) = f(x+2) \)[/tex], when we substitute [tex]\( x = 0 \)[/tex], we get:
[tex]\[ g(0) = f(0+2) = f(2) \][/tex]
This transformation shifts the function horizontally but does not affect the [tex]\( y \)[/tex]-intercept of the original function [tex]\( f(x) \)[/tex] directly. Hence, the [tex]\( y \)[/tex]-intercept remains whatever it was for [tex]\( f(x) \)[/tex], not necessarily [tex]\(-2\)[/tex].

#### Option B: [tex]\( g(x) = f(x) - 5 \)[/tex]
For [tex]\( g(x) = f(x) - 5 \)[/tex], when we substitute [tex]\( x = 0 \)[/tex], we get:
[tex]\[ g(0) = f(0) - 5 \][/tex]
This transformation shifts the entire function vertically down by 5 units. If the original [tex]\( y \)[/tex]-intercept of [tex]\( f(x) \)[/tex] is [tex]\( y_0 \)[/tex], then the new [tex]\( y \)[/tex]-intercept will be [tex]\( y_0 - 5 \)[/tex]. This does not guarantee a [tex]\( y \)[/tex]-intercept of [tex]\(-2\)[/tex] unless [tex]\( y_0 \)[/tex] was [tex]\(3\)[/tex].

#### Option C: [tex]\( g(x) = f(x-5) \)[/tex]
For [tex]\( g(x) = f(x-5) \)[/tex], when we substitute [tex]\( x = 0 \)[/tex], we get:
[tex]\[ g(0) = f(0-5) = f(-5) \][/tex]
This transformation shifts the function horizontally but does not affect the [tex]\( y \)[/tex]-intercept of the original function [tex]\( f(x) \)[/tex] directly. Hence, the [tex]\( y \)[/tex]-intercept remains whatever it was for [tex]\( f(x) \)[/tex], not necessarily [tex]\(-2\)[/tex].

#### Option D: [tex]\( g(x) = f(x) - 2 \)[/tex]
For [tex]\( g(x) = f(x) - 2 \)[/tex], when we substitute [tex]\( x = 0 \)[/tex], we get:
[tex]\[ g(0) = f(0) - 2 \][/tex]
This transformation shifts the entire function vertically down by 2 units. If the original [tex]\( y \)[/tex]-intercept of [tex]\( f(x) \)[/tex] is [tex]\( y_0 \)[/tex], then the new [tex]\( y \)[/tex]-intercept will be [tex]\( y_0 - 2 \)[/tex]. Therefore, if the original [tex]\( y \)[/tex]-intercept of [tex]\( f(x) \)[/tex] was [tex]\( 0 \)[/tex], the new [tex]\( y \)[/tex]-intercept becomes [tex]\( -2 \)[/tex], which matches the given condition.

### Conclusion
The only transformation that results in a [tex]\( y \)[/tex]-intercept of [tex]\(-2\)[/tex] is option D:

[tex]\[ \boxed{g(x) = f(x) - 2} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.