At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To prove that [tex]\( RSTU \)[/tex] is a square, we need to follow logical steps with accurate justifications for each statement. Below is the solution outlined step-by-step with the correct order of reasons:
1. Statements and Reasons:
[tex]\[ \begin{array}{|l|l|} \hline \multicolumn{1}{|c|}{\text{Statements}} & \multicolumn{1}{c|}{\text{Reasons}} \\ \hline 1. \, RSTU \, \text{is a rectangle with vertices} \, R (0,0), S (0, a ), T ( a , a ), & 1. \, \text{given} \\ U \, ( a , 0) & \\ \hline 2. \, RS = a \, \text{units} & 2. \, \text{distance formula} \\ \hline 3. \, ST = a \, \text{units} & 3. \, \text{distance formula} \\ \hline 4. \, \overline{RS} \cong \overline{ST} & 4. \, \text{definition of congruence} \\ \hline 5. \, RSTU \, \text{is a square} & 5. \, \text{If two consecutive sides of a rectangle are congruent, then it's a square} \\ \hline \end{array} \][/tex]
Now we can identify the correct order of reasons to complete the proof from the given options:
2. [tex]\( \text{distance formula} \)[/tex]
3. [tex]\( \text{distance formula} \)[/tex]
4. [tex]\( \text{definition of congruence} \)[/tex]
5. [tex]\( \text{If two consecutive sides of a rectangle are congruent, then it's a square} \)[/tex]
Thus, the correct answer is:
C. distance formula; definition of congruence; if two consecutive sides of a rectangle are congruent, then it's a square
1. Statements and Reasons:
[tex]\[ \begin{array}{|l|l|} \hline \multicolumn{1}{|c|}{\text{Statements}} & \multicolumn{1}{c|}{\text{Reasons}} \\ \hline 1. \, RSTU \, \text{is a rectangle with vertices} \, R (0,0), S (0, a ), T ( a , a ), & 1. \, \text{given} \\ U \, ( a , 0) & \\ \hline 2. \, RS = a \, \text{units} & 2. \, \text{distance formula} \\ \hline 3. \, ST = a \, \text{units} & 3. \, \text{distance formula} \\ \hline 4. \, \overline{RS} \cong \overline{ST} & 4. \, \text{definition of congruence} \\ \hline 5. \, RSTU \, \text{is a square} & 5. \, \text{If two consecutive sides of a rectangle are congruent, then it's a square} \\ \hline \end{array} \][/tex]
Now we can identify the correct order of reasons to complete the proof from the given options:
2. [tex]\( \text{distance formula} \)[/tex]
3. [tex]\( \text{distance formula} \)[/tex]
4. [tex]\( \text{definition of congruence} \)[/tex]
5. [tex]\( \text{If two consecutive sides of a rectangle are congruent, then it's a square} \)[/tex]
Thus, the correct answer is:
C. distance formula; definition of congruence; if two consecutive sides of a rectangle are congruent, then it's a square
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.