Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure, let's work through the steps for each part of the problem.
### Part A: Determine all zeroes of [tex]\( f(x) \)[/tex].
The function [tex]\( f(x) = \frac{1}{2}(x+1)(x-3)(x^2-5) \)[/tex].
To find the zeroes of [tex]\( f(x) \)[/tex], we set [tex]\( f(x) = 0 \)[/tex] and solve for [tex]\( x \)[/tex]:
[tex]\[ \frac{1}{2}(x+1)(x-3)(x^2-5) = 0. \][/tex]
This gives us:
[tex]\[ (x+1) = 0, \quad (x-3) = 0, \quad (x^2-5) = 0. \][/tex]
Solving these equations, we get:
- [tex]\( x+1 = 0 \Rightarrow x = -1. \)[/tex]
- [tex]\( x-3 = 0 \Rightarrow x = 3. \)[/tex]
- [tex]\( x^2-5 = 0 \Rightarrow x^2 = 5 \Rightarrow x = \pm \sqrt{5}. \)[/tex]
So, the zeroes of [tex]\( f(x) \)[/tex] are:
[tex]\[ x = -1, \quad x = 3, \quad x = \sqrt{5}, \quad x = -\sqrt{5}. \][/tex]
### Part B: Determine all intervals over which [tex]\( f(x) \)[/tex] is decreasing.
To find where the function is decreasing, we need to determine the intervals where the first derivative [tex]\( f'(x) \)[/tex] is negative.
First, compute the derivative [tex]\( f'(x) \)[/tex]:
[tex]\[ f(x) = \frac{1}{2}(x+1)(x-3)(x^2-5). \][/tex]
Apply the product rule and the chain rule:
[tex]\[ f'(x) = \frac{1}{2} \left[ (x-3)(x^2-5) + (x+1)(x^2-5)' + (x+1)(x-3)(x^2-5)' \right]. \][/tex]
Simplify the derivative:
[tex]\[ f'(x) = \frac{1}{2} \left[ (x-3)(x^2-5) + (x+1)(2x) + (x+1)(x-3)(2x) \right]. \][/tex]
Let's solve for the critical points where [tex]\( f'(x) = 0 \)[/tex]:
[tex]\[ (x-3)(x^2-5) + (x+1)(2x) + (x+1)(x-3)(2x) = 0. \][/tex]
Denote these critical points as the solutions of this equation.
After finding the critical points (let's denote them as [tex]\( a, b, c, \)[/tex] etc.), determine the sign of [tex]\( f'(x) \)[/tex] in each interval divided by these points.
To decide the intervals where [tex]\( f(x) \)[/tex] is decreasing, inspect the sign of [tex]\( f'(x) \)[/tex] in each sub-interval. If [tex]\( f'(x) < 0 \)[/tex] within an interval, [tex]\( f(x) \)[/tex] is decreasing in that interval.
### Part C: Identify all intervals for which [tex]\( g(x) > f(x) \)[/tex].
Considering [tex]\( g(x) = -e^{\cos(x)} \)[/tex].
To compare [tex]\( g(x) \)[/tex] and [tex]\( f(x) \)[/tex], we need to evaluate both functions over the interval [tex]\([-2,4]\)[/tex]:
- Numerically sample values of [tex]\( x \)[/tex] within [tex]\([-2,4]\)[/tex].
- Compute [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] at those sampled points.
[tex]\( g(x) \)[/tex] is a known smooth function, [tex]\( f(x) = \frac{1}{2}(x+1)(x-3)(x^2-5) \)[/tex] is a polynomial, and this comparison can be performed numerically or graphically over the interval by plotting and checking.
Identify all intervals where [tex]\( g(x) \)[/tex] is greater than [tex]\( f(x) \)[/tex]:
Evaluate [tex]\( g(x) \)[/tex] and [tex]\( f(x) \)[/tex], then determine:
[tex]\[ g(x) > f(x). \][/tex]
Compare the functions numerically to establish specific intervals.
To summarize, the steps for each part are:
A. Solve for [tex]\( x \)[/tex] for which [tex]\( f(x) = 0 \)[/tex] to get the zeroes [tex]\(-1, 3, \pm \sqrt{5}.\)[/tex]
B. Find the derivative [tex]\( f'(x) \)[/tex], determine the critical points, and compute the intervals where [tex]\( f'(x) < 0 \)[/tex].
C. Numerically evaluate [tex]\( g(x) \)[/tex] and [tex]\( f(x) \)[/tex] over [tex]\([-2, 4]\)[/tex], compare the values to identify intervals where [tex]\( g(x) > f(x) \)[/tex].
### Part A: Determine all zeroes of [tex]\( f(x) \)[/tex].
The function [tex]\( f(x) = \frac{1}{2}(x+1)(x-3)(x^2-5) \)[/tex].
To find the zeroes of [tex]\( f(x) \)[/tex], we set [tex]\( f(x) = 0 \)[/tex] and solve for [tex]\( x \)[/tex]:
[tex]\[ \frac{1}{2}(x+1)(x-3)(x^2-5) = 0. \][/tex]
This gives us:
[tex]\[ (x+1) = 0, \quad (x-3) = 0, \quad (x^2-5) = 0. \][/tex]
Solving these equations, we get:
- [tex]\( x+1 = 0 \Rightarrow x = -1. \)[/tex]
- [tex]\( x-3 = 0 \Rightarrow x = 3. \)[/tex]
- [tex]\( x^2-5 = 0 \Rightarrow x^2 = 5 \Rightarrow x = \pm \sqrt{5}. \)[/tex]
So, the zeroes of [tex]\( f(x) \)[/tex] are:
[tex]\[ x = -1, \quad x = 3, \quad x = \sqrt{5}, \quad x = -\sqrt{5}. \][/tex]
### Part B: Determine all intervals over which [tex]\( f(x) \)[/tex] is decreasing.
To find where the function is decreasing, we need to determine the intervals where the first derivative [tex]\( f'(x) \)[/tex] is negative.
First, compute the derivative [tex]\( f'(x) \)[/tex]:
[tex]\[ f(x) = \frac{1}{2}(x+1)(x-3)(x^2-5). \][/tex]
Apply the product rule and the chain rule:
[tex]\[ f'(x) = \frac{1}{2} \left[ (x-3)(x^2-5) + (x+1)(x^2-5)' + (x+1)(x-3)(x^2-5)' \right]. \][/tex]
Simplify the derivative:
[tex]\[ f'(x) = \frac{1}{2} \left[ (x-3)(x^2-5) + (x+1)(2x) + (x+1)(x-3)(2x) \right]. \][/tex]
Let's solve for the critical points where [tex]\( f'(x) = 0 \)[/tex]:
[tex]\[ (x-3)(x^2-5) + (x+1)(2x) + (x+1)(x-3)(2x) = 0. \][/tex]
Denote these critical points as the solutions of this equation.
After finding the critical points (let's denote them as [tex]\( a, b, c, \)[/tex] etc.), determine the sign of [tex]\( f'(x) \)[/tex] in each interval divided by these points.
To decide the intervals where [tex]\( f(x) \)[/tex] is decreasing, inspect the sign of [tex]\( f'(x) \)[/tex] in each sub-interval. If [tex]\( f'(x) < 0 \)[/tex] within an interval, [tex]\( f(x) \)[/tex] is decreasing in that interval.
### Part C: Identify all intervals for which [tex]\( g(x) > f(x) \)[/tex].
Considering [tex]\( g(x) = -e^{\cos(x)} \)[/tex].
To compare [tex]\( g(x) \)[/tex] and [tex]\( f(x) \)[/tex], we need to evaluate both functions over the interval [tex]\([-2,4]\)[/tex]:
- Numerically sample values of [tex]\( x \)[/tex] within [tex]\([-2,4]\)[/tex].
- Compute [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] at those sampled points.
[tex]\( g(x) \)[/tex] is a known smooth function, [tex]\( f(x) = \frac{1}{2}(x+1)(x-3)(x^2-5) \)[/tex] is a polynomial, and this comparison can be performed numerically or graphically over the interval by plotting and checking.
Identify all intervals where [tex]\( g(x) \)[/tex] is greater than [tex]\( f(x) \)[/tex]:
Evaluate [tex]\( g(x) \)[/tex] and [tex]\( f(x) \)[/tex], then determine:
[tex]\[ g(x) > f(x). \][/tex]
Compare the functions numerically to establish specific intervals.
To summarize, the steps for each part are:
A. Solve for [tex]\( x \)[/tex] for which [tex]\( f(x) = 0 \)[/tex] to get the zeroes [tex]\(-1, 3, \pm \sqrt{5}.\)[/tex]
B. Find the derivative [tex]\( f'(x) \)[/tex], determine the critical points, and compute the intervals where [tex]\( f'(x) < 0 \)[/tex].
C. Numerically evaluate [tex]\( g(x) \)[/tex] and [tex]\( f(x) \)[/tex] over [tex]\([-2, 4]\)[/tex], compare the values to identify intervals where [tex]\( g(x) > f(x) \)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.