Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find an expression equivalent to the polynomial [tex]\( 16x^2 + 4 \)[/tex], let's go through the factoring process.
First, let's start from the given polynomial:
[tex]\[ 16x^2 + 4 \][/tex]
Notice that [tex]\( 16x^2 + 4 \)[/tex] can be factored by first identifying the common factor:
[tex]\[ 16x^2 + 4 = 4(4x^2 + 1) \][/tex]
Next, we need to factor [tex]\( 4x^2 + 1 \)[/tex]. This expression is a sum of squares, and can be written as:
[tex]\[ 4x^2 + 1 = (2x)^2 + (1)^2 \][/tex]
The sum of squares can be factored using complex numbers:
[tex]\[ a^2 + b^2 = (a + bi)(a - bi) \][/tex]
Here, [tex]\( a = 2x \)[/tex] and [tex]\( b = 1 \)[/tex]. Substituting these values into the factoring formula, we get:
[tex]\[ 4x^2 + 1 = (2x + i)(2x - i) \][/tex]
Now, substituting this back into our original expression:
[tex]\[ 16x^2 + 4 = 4((2x + i)(2x - i)) \][/tex]
Finally, note that we can further simplify [tex]\( 4((2x + i)(2x - i)) \)[/tex]:
[tex]\[ 4((2x + i)(2x - i)) = (4x + 2i)(4x - 2i) \][/tex]
Therefore, the expression equivalent to the polynomial [tex]\( 16x^2 + 4 \)[/tex] is:
[tex]\[ (4x + 2i)(4x - 2i) \][/tex]
So, the correct answer is:
[tex]\[ \boxed{A} \][/tex]
First, let's start from the given polynomial:
[tex]\[ 16x^2 + 4 \][/tex]
Notice that [tex]\( 16x^2 + 4 \)[/tex] can be factored by first identifying the common factor:
[tex]\[ 16x^2 + 4 = 4(4x^2 + 1) \][/tex]
Next, we need to factor [tex]\( 4x^2 + 1 \)[/tex]. This expression is a sum of squares, and can be written as:
[tex]\[ 4x^2 + 1 = (2x)^2 + (1)^2 \][/tex]
The sum of squares can be factored using complex numbers:
[tex]\[ a^2 + b^2 = (a + bi)(a - bi) \][/tex]
Here, [tex]\( a = 2x \)[/tex] and [tex]\( b = 1 \)[/tex]. Substituting these values into the factoring formula, we get:
[tex]\[ 4x^2 + 1 = (2x + i)(2x - i) \][/tex]
Now, substituting this back into our original expression:
[tex]\[ 16x^2 + 4 = 4((2x + i)(2x - i)) \][/tex]
Finally, note that we can further simplify [tex]\( 4((2x + i)(2x - i)) \)[/tex]:
[tex]\[ 4((2x + i)(2x - i)) = (4x + 2i)(4x - 2i) \][/tex]
Therefore, the expression equivalent to the polynomial [tex]\( 16x^2 + 4 \)[/tex] is:
[tex]\[ (4x + 2i)(4x - 2i) \][/tex]
So, the correct answer is:
[tex]\[ \boxed{A} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.