Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the equation of the line that is perpendicular to the given line [tex]\( y = \frac{4}{5}x + 23 \)[/tex] and passes through the point [tex]\((-40, 20)\)[/tex], follow these steps:
1. Determine the slope of the given line:
The given line is in the slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope. For the line [tex]\( y = \frac{4}{5}x + 23 \)[/tex], the slope [tex]\( m \)[/tex] is [tex]\( \frac{4}{5} \)[/tex].
2. Find the slope of the perpendicular line:
The slope of a line perpendicular to another is the negative reciprocal of the original slope. Therefore, the slope of the perpendicular line is [tex]\( -\frac{1}{\frac{4}{5}} \)[/tex], which simplifies to [tex]\( -\frac{5}{4} \)[/tex].
3. Use the point-slope form to find the equation:
The point-slope form of a line's equation is [tex]\( y - y_1 = m(x - x_1) \)[/tex], where [tex]\( (x_1, y_1) \)[/tex] is a point on the line and [tex]\( m \)[/tex] is the slope. We have the point [tex]\((-40, 20)\)[/tex] and the slope [tex]\( -\frac{5}{4} \)[/tex].
Plugging in these values, we get:
[tex]\[ y - 20 = -\frac{5}{4}(x + 40) \][/tex]
4. Simplify the equation:
Distribute the slope on the right-hand side:
[tex]\[ y - 20 = -\frac{5}{4}x - 50 \][/tex]
Add 20 to both sides to solve for [tex]\( y \)[/tex]:
[tex]\[ y = -\frac{5}{4}x - 50 + 20 \][/tex]
[tex]\[ y = -\frac{5}{4}x - 30 \][/tex]
So, the equation of the line that is perpendicular to [tex]\( y = \frac{4}{5}x + 23 \)[/tex] and passes through the point [tex]\((-40, 20)\)[/tex] is:
[tex]\[ y = -\frac{5}{4}x - 30 \][/tex]
Therefore, the correct answer is:
B. [tex]\( y = -\frac{5}{4}x - 30 \)[/tex]
1. Determine the slope of the given line:
The given line is in the slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope. For the line [tex]\( y = \frac{4}{5}x + 23 \)[/tex], the slope [tex]\( m \)[/tex] is [tex]\( \frac{4}{5} \)[/tex].
2. Find the slope of the perpendicular line:
The slope of a line perpendicular to another is the negative reciprocal of the original slope. Therefore, the slope of the perpendicular line is [tex]\( -\frac{1}{\frac{4}{5}} \)[/tex], which simplifies to [tex]\( -\frac{5}{4} \)[/tex].
3. Use the point-slope form to find the equation:
The point-slope form of a line's equation is [tex]\( y - y_1 = m(x - x_1) \)[/tex], where [tex]\( (x_1, y_1) \)[/tex] is a point on the line and [tex]\( m \)[/tex] is the slope. We have the point [tex]\((-40, 20)\)[/tex] and the slope [tex]\( -\frac{5}{4} \)[/tex].
Plugging in these values, we get:
[tex]\[ y - 20 = -\frac{5}{4}(x + 40) \][/tex]
4. Simplify the equation:
Distribute the slope on the right-hand side:
[tex]\[ y - 20 = -\frac{5}{4}x - 50 \][/tex]
Add 20 to both sides to solve for [tex]\( y \)[/tex]:
[tex]\[ y = -\frac{5}{4}x - 50 + 20 \][/tex]
[tex]\[ y = -\frac{5}{4}x - 30 \][/tex]
So, the equation of the line that is perpendicular to [tex]\( y = \frac{4}{5}x + 23 \)[/tex] and passes through the point [tex]\((-40, 20)\)[/tex] is:
[tex]\[ y = -\frac{5}{4}x - 30 \][/tex]
Therefore, the correct answer is:
B. [tex]\( y = -\frac{5}{4}x - 30 \)[/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.