Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the equation of the line that is perpendicular to the given line [tex]\( y = \frac{4}{5}x + 23 \)[/tex] and passes through the point [tex]\((-40, 20)\)[/tex], follow these steps:
1. Determine the slope of the given line:
The given line is in the slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope. For the line [tex]\( y = \frac{4}{5}x + 23 \)[/tex], the slope [tex]\( m \)[/tex] is [tex]\( \frac{4}{5} \)[/tex].
2. Find the slope of the perpendicular line:
The slope of a line perpendicular to another is the negative reciprocal of the original slope. Therefore, the slope of the perpendicular line is [tex]\( -\frac{1}{\frac{4}{5}} \)[/tex], which simplifies to [tex]\( -\frac{5}{4} \)[/tex].
3. Use the point-slope form to find the equation:
The point-slope form of a line's equation is [tex]\( y - y_1 = m(x - x_1) \)[/tex], where [tex]\( (x_1, y_1) \)[/tex] is a point on the line and [tex]\( m \)[/tex] is the slope. We have the point [tex]\((-40, 20)\)[/tex] and the slope [tex]\( -\frac{5}{4} \)[/tex].
Plugging in these values, we get:
[tex]\[ y - 20 = -\frac{5}{4}(x + 40) \][/tex]
4. Simplify the equation:
Distribute the slope on the right-hand side:
[tex]\[ y - 20 = -\frac{5}{4}x - 50 \][/tex]
Add 20 to both sides to solve for [tex]\( y \)[/tex]:
[tex]\[ y = -\frac{5}{4}x - 50 + 20 \][/tex]
[tex]\[ y = -\frac{5}{4}x - 30 \][/tex]
So, the equation of the line that is perpendicular to [tex]\( y = \frac{4}{5}x + 23 \)[/tex] and passes through the point [tex]\((-40, 20)\)[/tex] is:
[tex]\[ y = -\frac{5}{4}x - 30 \][/tex]
Therefore, the correct answer is:
B. [tex]\( y = -\frac{5}{4}x - 30 \)[/tex]
1. Determine the slope of the given line:
The given line is in the slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope. For the line [tex]\( y = \frac{4}{5}x + 23 \)[/tex], the slope [tex]\( m \)[/tex] is [tex]\( \frac{4}{5} \)[/tex].
2. Find the slope of the perpendicular line:
The slope of a line perpendicular to another is the negative reciprocal of the original slope. Therefore, the slope of the perpendicular line is [tex]\( -\frac{1}{\frac{4}{5}} \)[/tex], which simplifies to [tex]\( -\frac{5}{4} \)[/tex].
3. Use the point-slope form to find the equation:
The point-slope form of a line's equation is [tex]\( y - y_1 = m(x - x_1) \)[/tex], where [tex]\( (x_1, y_1) \)[/tex] is a point on the line and [tex]\( m \)[/tex] is the slope. We have the point [tex]\((-40, 20)\)[/tex] and the slope [tex]\( -\frac{5}{4} \)[/tex].
Plugging in these values, we get:
[tex]\[ y - 20 = -\frac{5}{4}(x + 40) \][/tex]
4. Simplify the equation:
Distribute the slope on the right-hand side:
[tex]\[ y - 20 = -\frac{5}{4}x - 50 \][/tex]
Add 20 to both sides to solve for [tex]\( y \)[/tex]:
[tex]\[ y = -\frac{5}{4}x - 50 + 20 \][/tex]
[tex]\[ y = -\frac{5}{4}x - 30 \][/tex]
So, the equation of the line that is perpendicular to [tex]\( y = \frac{4}{5}x + 23 \)[/tex] and passes through the point [tex]\((-40, 20)\)[/tex] is:
[tex]\[ y = -\frac{5}{4}x - 30 \][/tex]
Therefore, the correct answer is:
B. [tex]\( y = -\frac{5}{4}x - 30 \)[/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.