Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Let [tex]\( z_1 = 1 + i \)[/tex] and [tex]\( z_2 = \sqrt{3} - i \)[/tex].

Find the four fourth roots of [tex]\(-16\)[/tex].


Sagot :

To find the four fourth roots of [tex]\( -16 \)[/tex], we will follow these steps:

### Step 1: Express [tex]\(-16\)[/tex] in Polar Form
A complex number can be expressed in polar form as:
[tex]\[ z = re^{i\theta} \][/tex]
where [tex]\( r \)[/tex] is the modulus (magnitude) and [tex]\( \theta \)[/tex] is the argument (angle).

For the number [tex]\(-16\)[/tex], we identify the following:
- The modulus [tex]\( r \)[/tex] is the distance from the origin to the point, which is [tex]\( 16 \)[/tex] (since [tex]\( |-16| = 16 \)[/tex]).
- The argument [tex]\( \theta \)[/tex] is the angle in radians. Since [tex]\(-16\)[/tex] lies on the negative real axis, directly left of the origin, its argument is [tex]\( \pi \)[/tex] radians (or 180 degrees).

So we can write:
[tex]\[ -16 = 16e^{i\pi} \][/tex]

### Step 2: Find the Fourth Roots
The fourth roots of a complex number can be found using the formula:
[tex]\[ z_k = r^{1/4} e^{i(\theta + 2k\pi)/n} \][/tex]
where [tex]\( r \)[/tex] is the modulus, [tex]\( \theta \)[/tex] is the argument, [tex]\( n \)[/tex] is the degree of the root (4th root here), and [tex]\( k = 0, 1, 2, 3 \)[/tex] are the different roots.

Given:
[tex]\[ r = 16 \][/tex]
[tex]\[ \theta = \pi \][/tex]
[tex]\[ n = 4 \][/tex]

### Step 3: Calculate Each Root

For [tex]\( k = 0 \)[/tex]:
[tex]\[ z_0 = 16^{1/4} e^{i(\pi + 2 \cdot 0 \cdot \pi)/4} = 16^{1/4} e^{i\pi/4} \][/tex]
[tex]\[ 16^{1/4} = \sqrt{2} \cdot \sqrt{2} = \sqrt{4} = 2 \][/tex]
[tex]\[ z_0 = 2 e^{i\pi/4} = 2 \left( \cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) = 2 \left( \frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2} \right) = \sqrt{2} + i\sqrt{2} \][/tex]

For [tex]\( k = 1 \)[/tex]:
[tex]\[ z_1 = 16^{1/4} e^{i(\pi + 2 \cdot 1 \cdot \pi)/4} = 16^{1/4} e^{i3\pi/4} \][/tex]
[tex]\[ z_1 = 2 e^{i3\pi/4} = 2 \left( \cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right) = 2 \left( -\frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2} \right) = -\sqrt{2} + i\sqrt{2} \][/tex]

For [tex]\( k = 2 \)[/tex]:
[tex]\[ z_2 = 16^{1/4} e^{i(\pi + 2 \cdot 2 \cdot \pi)/4} = 16^{1/4} e^{i5\pi/4} \][/tex]
[tex]\[ z_2 = 2 e^{i5\pi/4} = 2 \left( \cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4} \right) = 2 \left( -\frac{\sqrt{2}}{2} - i \frac{\sqrt{2}}{2} \right) = -\sqrt{2} - i\sqrt{2} \][/tex]

For [tex]\( k = 3 \)[/tex]:
[tex]\[ z_3 = 16^{1/4} e^{i(\pi + 2 \cdot 3 \cdot \pi)/4} = 16^{1/4} e^{i7\pi/4} \][/tex]
[tex]\[ z_3 = 2 e^{i7\pi/4} = 2 \left( \cos \frac{7\pi}{4} + i \sin \frac{7\pi}{4} \right) = 2 \left( \frac{\sqrt{2}}{2} - i \frac{\sqrt{2}}{2} \right) = \sqrt{2} - i\sqrt{2} \][/tex]

### Summary of Roots
So, the four fourth roots of [tex]\(-16\)[/tex] are:
[tex]\[ \sqrt{2} + i\sqrt{2}, \][/tex]
[tex]\[ -\sqrt{2} + i\sqrt{2}, \][/tex]
[tex]\[ -\sqrt{2} - i\sqrt{2}, \][/tex]
[tex]\[ \sqrt{2} - i\sqrt{2}. \][/tex]