Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the rule that describes the composition of transformations mapping pre-image [tex]\(ABCD\)[/tex] to the final image [tex]\(A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}\)[/tex], let’s analyze each of the transformations described and the order in which they should be applied.
1. [tex]\(r_{x-2x i 5}\)[/tex]: This appears to denote a rotation transformation. "5" could represent an angle, but the exact rotation center isn’t specified in typical notation.
2. [tex]\(T_{-6,1}\)[/tex]: This denotes a translation transformation by the vector [tex]\((-6, 1)\)[/tex], meaning every point [tex]\((x, y)\)[/tex] is moved to [tex]\((x - 6, y + 1)\)[/tex].
Given the options:
1. [tex]\(r_{x-2 x i 5}\)[/tex] OT [tex]\(T_{-6,1}(x, y)\)[/tex]: This appears to denote a rotation followed by translation, but the notation "OT" is unclear.
2. [tex]\(T_{-6,1} \circ r_{x-2 x i s}(x, y)\)[/tex]: This means first apply the rotation [tex]\(r_{x-2 x i s}\)[/tex] and then apply the translation [tex]\(T_{-6,1}\)[/tex].
3. [tex]\(R_{0,500}\)[/tex] OT [tex]\(-6,1(x, y)\)[/tex]: This is ambiguous due to non-standard notation, but even so, the numbers “500” and “-6,1” do not clearly relate to the specified transformations.
4. [tex]\(T_{-6,1} \circ R_{0,900}(x, y)\)[/tex]: This means first apply the rotation [tex]\(R_{0,900}\)[/tex], then the translation [tex]\(T_{-6,1}\)[/tex], but the "900" is not specified clearly how it correlates to the given transformations.
The correct rule for describing the given transformations in the sequence indicated (first a rotation, then a translation) is:
[tex]\[ T_{-6,1} \circ r_{x-2 x i s}(x, y) \][/tex]
Here, [tex]\(T_{-6,1}\)[/tex] denotes the translation and [tex]\(\circ\)[/tex] denotes the composition of the two transformations, applying the rotation first followed by the translation.
1. [tex]\(r_{x-2x i 5}\)[/tex]: This appears to denote a rotation transformation. "5" could represent an angle, but the exact rotation center isn’t specified in typical notation.
2. [tex]\(T_{-6,1}\)[/tex]: This denotes a translation transformation by the vector [tex]\((-6, 1)\)[/tex], meaning every point [tex]\((x, y)\)[/tex] is moved to [tex]\((x - 6, y + 1)\)[/tex].
Given the options:
1. [tex]\(r_{x-2 x i 5}\)[/tex] OT [tex]\(T_{-6,1}(x, y)\)[/tex]: This appears to denote a rotation followed by translation, but the notation "OT" is unclear.
2. [tex]\(T_{-6,1} \circ r_{x-2 x i s}(x, y)\)[/tex]: This means first apply the rotation [tex]\(r_{x-2 x i s}\)[/tex] and then apply the translation [tex]\(T_{-6,1}\)[/tex].
3. [tex]\(R_{0,500}\)[/tex] OT [tex]\(-6,1(x, y)\)[/tex]: This is ambiguous due to non-standard notation, but even so, the numbers “500” and “-6,1” do not clearly relate to the specified transformations.
4. [tex]\(T_{-6,1} \circ R_{0,900}(x, y)\)[/tex]: This means first apply the rotation [tex]\(R_{0,900}\)[/tex], then the translation [tex]\(T_{-6,1}\)[/tex], but the "900" is not specified clearly how it correlates to the given transformations.
The correct rule for describing the given transformations in the sequence indicated (first a rotation, then a translation) is:
[tex]\[ T_{-6,1} \circ r_{x-2 x i s}(x, y) \][/tex]
Here, [tex]\(T_{-6,1}\)[/tex] denotes the translation and [tex]\(\circ\)[/tex] denotes the composition of the two transformations, applying the rotation first followed by the translation.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.