At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's analyze each option given about an isosceles right triangle.
First, recall some key properties of an isosceles right triangle:
- An isosceles right triangle has two equal legs.
- The angles opposite those legs are each 45 degrees.
- The hypotenuse is opposite the right angle (90 degrees) and is the longest side of the triangle.
Consider an isosceles right triangle where both legs are of length [tex]\( a \)[/tex]. We can use the Pythagorean theorem to find the hypotenuse.
The Pythagorean theorem states that in a right triangle:
[tex]\[ a^2 + a^2 = h^2 \][/tex]
where [tex]\( h \)[/tex] is the hypotenuse.
Simplifying,
[tex]\[ 2a^2 = h^2 \][/tex]
[tex]\[ h = \sqrt{2a^2} \][/tex]
[tex]\[ h = a\sqrt{2} \][/tex]
This indicates that the hypotenuse [tex]\( h \)[/tex] is [tex]\(\sqrt{2} \)[/tex] times the length of either leg.
Now, let's evaluate the options:
A. Each leg is [tex]\( \sqrt{3} \)[/tex] times as long as the hypotenuse.
- This does not align with our result, so this statement is false.
B. The hypotenuse is [tex]\( \sqrt{2} \)[/tex] times as long as either leg.
- This matches the result, where [tex]\( h = a\sqrt{2} \)[/tex]. This statement is true.
C. Each leg is [tex]\( \sqrt{2} \)[/tex] times as long as the hypotenuse.
- This is the inverse of our result and does not hold true. This statement is false.
D. The hypotenuse is [tex]\( \sqrt{3} \)[/tex] times as long as either leg.
- This does not align with our result, so this statement is false.
Therefore, the correct and true statement about an isosceles right triangle is:
B. The hypotenuse is [tex]\(\sqrt{2}\)[/tex] times as long as either leg.
First, recall some key properties of an isosceles right triangle:
- An isosceles right triangle has two equal legs.
- The angles opposite those legs are each 45 degrees.
- The hypotenuse is opposite the right angle (90 degrees) and is the longest side of the triangle.
Consider an isosceles right triangle where both legs are of length [tex]\( a \)[/tex]. We can use the Pythagorean theorem to find the hypotenuse.
The Pythagorean theorem states that in a right triangle:
[tex]\[ a^2 + a^2 = h^2 \][/tex]
where [tex]\( h \)[/tex] is the hypotenuse.
Simplifying,
[tex]\[ 2a^2 = h^2 \][/tex]
[tex]\[ h = \sqrt{2a^2} \][/tex]
[tex]\[ h = a\sqrt{2} \][/tex]
This indicates that the hypotenuse [tex]\( h \)[/tex] is [tex]\(\sqrt{2} \)[/tex] times the length of either leg.
Now, let's evaluate the options:
A. Each leg is [tex]\( \sqrt{3} \)[/tex] times as long as the hypotenuse.
- This does not align with our result, so this statement is false.
B. The hypotenuse is [tex]\( \sqrt{2} \)[/tex] times as long as either leg.
- This matches the result, where [tex]\( h = a\sqrt{2} \)[/tex]. This statement is true.
C. Each leg is [tex]\( \sqrt{2} \)[/tex] times as long as the hypotenuse.
- This is the inverse of our result and does not hold true. This statement is false.
D. The hypotenuse is [tex]\( \sqrt{3} \)[/tex] times as long as either leg.
- This does not align with our result, so this statement is false.
Therefore, the correct and true statement about an isosceles right triangle is:
B. The hypotenuse is [tex]\(\sqrt{2}\)[/tex] times as long as either leg.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.