Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Ammonia, [tex]\( NH_3 (\Delta H = -45.9 \text{ kJ}) \)[/tex], reacts with oxygen to produce water [tex]\( (\Delta H = -241.8 \text{ kJ}) \)[/tex] and nitric oxide, [tex]\( NO (91.3 \text{ kJ}) \)[/tex], in the following reaction:

[tex]\[ 4 NH_3 (g) + 5 O_2 (g) \rightarrow 6 H_2O (g) + 4 NO (g) \][/tex]

What is the enthalpy change for this reaction?

Use [tex]\(\Delta H_{\text{reaction}} = \sum (\Delta H_{\text{products}}) - \sum (\Delta H_{\text{reactants}})\)[/tex].

A. [tex]\(-902 \text{ kJ}\)[/tex]
B. [tex]\(-104.6 \text{ kJ}\)[/tex]
C. [tex]\(104.6 \text{ kJ}\)[/tex]
D. [tex]\(900.8 \text{ kJ}\)[/tex]


Sagot :

To determine the enthalpy change for the given chemical reaction, we need to follow the enthalpy change equation:

[tex]\[ \Delta H_{\text{reaction}} = \sum (\Delta H_{\text{products}}) - \sum (\Delta H_{\text{reactants}}) \][/tex]

First, let's gather the given data for the enthalpy change of formation ([tex]\( \Delta H \)[/tex]) of each component:

- For [tex]\( NH_3 \)[/tex]: [tex]\( \Delta H_{NH_3} = -45.9 \, \text{kJ} \)[/tex]
- For [tex]\( H_2O \)[/tex]: [tex]\( \Delta H_{H_2O} = -241.8 \, \text{kJ} \)[/tex]
- For [tex]\( NO \)[/tex]: [tex]\( \Delta H_{NO} = 91.3 \, \text{kJ} \)[/tex]

Next, let's identify the coefficients from the balanced chemical reaction:

[tex]\[ 4 \, NH_3 (g) + 5 \, O_2 (g) \rightarrow 6 \, H_2O (g) + 4 \, NO (g) \][/tex]

Given the coefficients:
- 4 for [tex]\( NH_3 \)[/tex]
- 6 for [tex]\( H_2O \)[/tex]
- 4 for [tex]\( NO \)[/tex]

Now, let's calculate the total enthalpy change for the reactants:

[tex]\[ \Delta H_{\text{reactants}} = 4 \times \Delta H_{NH_3} \][/tex]
[tex]\[ \Delta H_{\text{reactants}} = 4 \times (-45.9 \, \text{kJ}) = -183.6 \, \text{kJ} \][/tex]

Next, let's calculate the total enthalpy change for the products:

[tex]\[ \Delta H_{\text{products}} = 6 \times \Delta H_{H_2O} + 4 \times \Delta H_{NO} \][/tex]
[tex]\[ \Delta H_{\text{products}} = 6 \times (-241.8 \, \text{kJ}) + 4 \times (91.3 \, \text{kJ}) \][/tex]
[tex]\[ \Delta H_{\text{products}} = -1450.8 \, \text{kJ} + 365.2 \, \text{kJ} \][/tex]
[tex]\[ \Delta H_{\text{products}} = -1085.6 \, \text{kJ} \][/tex]

Finally, we apply the enthalpy change equation to find the enthalpy change for the reaction:

[tex]\[ \Delta H_{\text{reaction}} = \Delta H_{\text{products}} - \Delta H_{\text{reactants}} \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -1085.6 \, \text{kJ} - (-183.6 \, \text{kJ}) \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -1085.6 \, \text{kJ} + 183.6 \, \text{kJ} \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -902.0 \, \text{kJ} \][/tex]

Thus, the enthalpy change for the reaction is [tex]\( -902.0 \, \text{kJ} \)[/tex]. The correct answer is:

[tex]\[ -902 \, \text{kJ} \][/tex]