Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Sure! Let's go through each option step-by-step to find the correct simplification that accurately explains the statement [tex]\(\sqrt{9} = 9^{\frac{1}{2}}\)[/tex].
### Option A
1. Start with [tex]\(\left(9^{\frac{1}{2}}\right)^2\)[/tex].
2. Rewrite as [tex]\(9^{\frac{1}{2}} \cdot 9^{\frac{1}{2}}\)[/tex].
3. Apply the exponent addition rule: [tex]\(9^{\frac{1}{2} + \frac{1}{2}}\)[/tex].
4. Simplify the exponent: [tex]\(9^{\frac{2}{2}}\)[/tex].
5. Simplify the fraction: [tex]\(9^1\)[/tex].
6. Result: [tex]\(9\)[/tex].
### Option B
1. Start with [tex]\(\left(9^{\frac{1}{2}}\right)^2\)[/tex].
2. Rewrite as [tex]\(9^{\frac{1}{2}} \cdot 9^{\frac{1}{2}}\)[/tex].
3. Incorrectly compute as [tex]\(9 \cdot \left(\frac{1}{2} + \frac{1}{2}\)[/tex]\), which should not be done since the base [tex]\(9\)[/tex] is constant.
4. Proceed with incorrect steps leading to: [tex]\(9 \cdot \frac{2}{2}\)[/tex].
5. Simplify to: [tex]\(9 \cdot 1 = 9\)[/tex].
While the final result is correct, the steps contain an error. Exponent addition should not be translated into multiplication with the base.
### Option C
1. Start with [tex]\(\left(9^{\frac{1}{2}}\right)^2\)[/tex].
2. Rewrite as [tex]\(9^{\frac{1}{2}} \cdot 9^{\frac{1}{2}}\)[/tex].
3. Apply the exponent addition rule: [tex]\(9^{\frac{1}{2} + \frac{1}{2}}\)[/tex].
4. Simplify the exponent: [tex]\(9^{\frac{2}{2}}\)[/tex].
5. Simplify the fraction: [tex]\(9^1\)[/tex].
6. Result: [tex]\(9\)[/tex].
### Option D
1. Start with [tex]\(\left(9^{\frac{1}{2}}\right)^2\)[/tex].
2. Rewrite as [tex]\(9^{\frac{1}{2}} \cdot 9^{\frac{1}{2}}\)[/tex].
3. Incorrectly compute as [tex]\(2 \cdot 9^{\frac{1}{2}}\)[/tex] which introduces an incorrect multiplication factor.
4. Proceed with erroneous steps resulting in incorrect intermediate calculations.
5. Reaches [tex]\(9\)[/tex] erroneously.
### Conclusion
The correct options are those which accurately follow mathematical rules for exponents and correctly apply arithmetic operations. Here, these are:
- Option A: [tex]\(\left(9^{\frac{1}{2}}\right)^2 = 9^{\frac{1}{2}} \cdot 9^{\frac{1}{2}} = 9^{\frac{1}{2} + \frac{1}{2}} = 9^{\frac{2}{2}} = 9^1 = 9\)[/tex]
- Option C: [tex]\(\left(9^{\frac{1}{2}}\right)^2 = 9^{\frac{1}{2}} \cdot 9^{\frac{1}{2}} = 9^{\frac{1}{2} + \frac{1}{2}} = 9^{\frac{2}{2}} = 9^1 = 9\)[/tex]
Since we are to select one correct option, either A or C would be correct. With the given approach, we choose:
Option A
### Option A
1. Start with [tex]\(\left(9^{\frac{1}{2}}\right)^2\)[/tex].
2. Rewrite as [tex]\(9^{\frac{1}{2}} \cdot 9^{\frac{1}{2}}\)[/tex].
3. Apply the exponent addition rule: [tex]\(9^{\frac{1}{2} + \frac{1}{2}}\)[/tex].
4. Simplify the exponent: [tex]\(9^{\frac{2}{2}}\)[/tex].
5. Simplify the fraction: [tex]\(9^1\)[/tex].
6. Result: [tex]\(9\)[/tex].
### Option B
1. Start with [tex]\(\left(9^{\frac{1}{2}}\right)^2\)[/tex].
2. Rewrite as [tex]\(9^{\frac{1}{2}} \cdot 9^{\frac{1}{2}}\)[/tex].
3. Incorrectly compute as [tex]\(9 \cdot \left(\frac{1}{2} + \frac{1}{2}\)[/tex]\), which should not be done since the base [tex]\(9\)[/tex] is constant.
4. Proceed with incorrect steps leading to: [tex]\(9 \cdot \frac{2}{2}\)[/tex].
5. Simplify to: [tex]\(9 \cdot 1 = 9\)[/tex].
While the final result is correct, the steps contain an error. Exponent addition should not be translated into multiplication with the base.
### Option C
1. Start with [tex]\(\left(9^{\frac{1}{2}}\right)^2\)[/tex].
2. Rewrite as [tex]\(9^{\frac{1}{2}} \cdot 9^{\frac{1}{2}}\)[/tex].
3. Apply the exponent addition rule: [tex]\(9^{\frac{1}{2} + \frac{1}{2}}\)[/tex].
4. Simplify the exponent: [tex]\(9^{\frac{2}{2}}\)[/tex].
5. Simplify the fraction: [tex]\(9^1\)[/tex].
6. Result: [tex]\(9\)[/tex].
### Option D
1. Start with [tex]\(\left(9^{\frac{1}{2}}\right)^2\)[/tex].
2. Rewrite as [tex]\(9^{\frac{1}{2}} \cdot 9^{\frac{1}{2}}\)[/tex].
3. Incorrectly compute as [tex]\(2 \cdot 9^{\frac{1}{2}}\)[/tex] which introduces an incorrect multiplication factor.
4. Proceed with erroneous steps resulting in incorrect intermediate calculations.
5. Reaches [tex]\(9\)[/tex] erroneously.
### Conclusion
The correct options are those which accurately follow mathematical rules for exponents and correctly apply arithmetic operations. Here, these are:
- Option A: [tex]\(\left(9^{\frac{1}{2}}\right)^2 = 9^{\frac{1}{2}} \cdot 9^{\frac{1}{2}} = 9^{\frac{1}{2} + \frac{1}{2}} = 9^{\frac{2}{2}} = 9^1 = 9\)[/tex]
- Option C: [tex]\(\left(9^{\frac{1}{2}}\right)^2 = 9^{\frac{1}{2}} \cdot 9^{\frac{1}{2}} = 9^{\frac{1}{2} + \frac{1}{2}} = 9^{\frac{2}{2}} = 9^1 = 9\)[/tex]
Since we are to select one correct option, either A or C would be correct. With the given approach, we choose:
Option A
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.