Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine how much energy is released when 59.7 grams of methane reacts with oxygen, let's break down the steps needed to solve the problem:
1. Identify Given Values:
- The enthalpy change ([tex]\(\Delta H\)[/tex]) for the reaction: [tex]\(-890 \text{ kJ/mol}\)[/tex]
- The mass of methane reacting: [tex]\(59.7 \text{ grams}\)[/tex]
- The molar mass of methane ([tex]\(\text{CH}_4\)[/tex]): [tex]\(16.04 \text{ g/mol}\)[/tex]
2. Calculate the Number of Moles of Methane:
- Number of moles is found by dividing the mass of the substance by its molar mass.
[tex]\[ \text{Moles of methane} = \frac{\text{mass of methane}}{\text{molar mass of methane}} = \frac{59.7 \text{ grams}}{16.04 \text{ g/mol}} \approx 3.721 \text{ moles} \][/tex]
3. Calculate the Energy Released:
- Energy released is found by multiplying the number of moles by the enthalpy change ([tex]\(\Delta H\)[/tex]).
[tex]\[ \text{Energy released} = \text{moles of methane} \times \Delta H = 3.721 \text{ moles} \times (-890 \text{ kJ/mol}) \approx -3312.531 \text{ kJ} \][/tex]
4. Express the Answer to Three Significant Figures:
- The energy released should be expressed correctly to three significant figures.
[tex]\[ \text{Energy released} \approx -3312.531 \text{ kJ} \rightarrow -3312.531 \approx -3310 \text{ kJ} \][/tex]
Thus, the combustion of 59.7 grams of methane releases [tex]\(\boxed{-3310}\)[/tex] kilojoules of energy.
1. Identify Given Values:
- The enthalpy change ([tex]\(\Delta H\)[/tex]) for the reaction: [tex]\(-890 \text{ kJ/mol}\)[/tex]
- The mass of methane reacting: [tex]\(59.7 \text{ grams}\)[/tex]
- The molar mass of methane ([tex]\(\text{CH}_4\)[/tex]): [tex]\(16.04 \text{ g/mol}\)[/tex]
2. Calculate the Number of Moles of Methane:
- Number of moles is found by dividing the mass of the substance by its molar mass.
[tex]\[ \text{Moles of methane} = \frac{\text{mass of methane}}{\text{molar mass of methane}} = \frac{59.7 \text{ grams}}{16.04 \text{ g/mol}} \approx 3.721 \text{ moles} \][/tex]
3. Calculate the Energy Released:
- Energy released is found by multiplying the number of moles by the enthalpy change ([tex]\(\Delta H\)[/tex]).
[tex]\[ \text{Energy released} = \text{moles of methane} \times \Delta H = 3.721 \text{ moles} \times (-890 \text{ kJ/mol}) \approx -3312.531 \text{ kJ} \][/tex]
4. Express the Answer to Three Significant Figures:
- The energy released should be expressed correctly to three significant figures.
[tex]\[ \text{Energy released} \approx -3312.531 \text{ kJ} \rightarrow -3312.531 \approx -3310 \text{ kJ} \][/tex]
Thus, the combustion of 59.7 grams of methane releases [tex]\(\boxed{-3310}\)[/tex] kilojoules of energy.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.