Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine if a triangle with side lengths [tex]\(5\)[/tex] cm, [tex]\(12\)[/tex] cm, and [tex]\(13\)[/tex] cm is a right triangle, we need to verify if it satisfies the Pythagorean Theorem. The Pythagorean Theorem states that for a right triangle with side lengths [tex]\(a\)[/tex], [tex]\(b\)[/tex], and hypotenuse [tex]\(c\)[/tex], the following equation holds true:
[tex]\[ a^2 + b^2 = c^2 \][/tex]
Given the side lengths [tex]\(5\)[/tex] cm, [tex]\(12\)[/tex] cm, and [tex]\(13\)[/tex] cm, we can assume that [tex]\(5\)[/tex] cm and [tex]\(12\)[/tex] cm are the legs ([tex]\(a\)[/tex] and [tex]\(b\)[/tex]), and [tex]\(13\)[/tex] cm is the hypotenuse ([tex]\(c\)[/tex]). We need to check the following:
[tex]\[ 5^2 + 12^2 = 13^2 \][/tex]
First, calculate [tex]\(5^2\)[/tex]:
[tex]\[ 5^2 = 25 \][/tex]
Next, calculate [tex]\(12^2\)[/tex]:
[tex]\[ 12^2 = 144 \][/tex]
Now, sum these squares:
[tex]\[ 25 + 144 = 169 \][/tex]
Then, calculate [tex]\(13^2\)[/tex]:
[tex]\[ 13^2 = 169 \][/tex]
We see that:
[tex]\[ 5^2 + 12^2 = 13^2 = 169 \][/tex]
Since [tex]\(5^2 + 12^2 = 13^2\)[/tex], the given side lengths satisfy the Pythagorean Theorem. Therefore, the triangle is a right triangle.
So, the correct explanation is:
The triangle is a right triangle because [tex]\(5^2 + 12^2 = 13^2\)[/tex].
[tex]\[ a^2 + b^2 = c^2 \][/tex]
Given the side lengths [tex]\(5\)[/tex] cm, [tex]\(12\)[/tex] cm, and [tex]\(13\)[/tex] cm, we can assume that [tex]\(5\)[/tex] cm and [tex]\(12\)[/tex] cm are the legs ([tex]\(a\)[/tex] and [tex]\(b\)[/tex]), and [tex]\(13\)[/tex] cm is the hypotenuse ([tex]\(c\)[/tex]). We need to check the following:
[tex]\[ 5^2 + 12^2 = 13^2 \][/tex]
First, calculate [tex]\(5^2\)[/tex]:
[tex]\[ 5^2 = 25 \][/tex]
Next, calculate [tex]\(12^2\)[/tex]:
[tex]\[ 12^2 = 144 \][/tex]
Now, sum these squares:
[tex]\[ 25 + 144 = 169 \][/tex]
Then, calculate [tex]\(13^2\)[/tex]:
[tex]\[ 13^2 = 169 \][/tex]
We see that:
[tex]\[ 5^2 + 12^2 = 13^2 = 169 \][/tex]
Since [tex]\(5^2 + 12^2 = 13^2\)[/tex], the given side lengths satisfy the Pythagorean Theorem. Therefore, the triangle is a right triangle.
So, the correct explanation is:
The triangle is a right triangle because [tex]\(5^2 + 12^2 = 13^2\)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.