Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the problem of finding the new coordinates of point [tex]\( P \)[/tex] after a translation, we will follow the given translation rule: [tex]\((x, y) \rightarrow (x - 5, y - 2)\)[/tex].
1. Identify the initial coordinates of point [tex]\( P \)[/tex]:
Point [tex]\( P \)[/tex] has initial coordinates [tex]\((6, -1)\)[/tex].
2. Apply the translation rule:
According to the translation rule, each coordinate of point [tex]\( P \)[/tex] needs to be adjusted as follows:
- The [tex]\( x \)[/tex]-coordinate is decreased by 5.
- The [tex]\( y \)[/tex]-coordinate is decreased by 2.
3. Calculate the new [tex]\( x \)[/tex]-coordinate:
- Initial [tex]\( x \)[/tex]-coordinate: 6
- Translation rule: [tex]\( x \rightarrow x - 5 \)[/tex]
- New [tex]\( x \)[/tex]-coordinate: [tex]\( 6 - 5 = 1 \)[/tex]
4. Calculate the new [tex]\( y \)[/tex]-coordinate:
- Initial [tex]\( y \)[/tex]-coordinate: -1
- Translation rule: [tex]\( y \rightarrow y - 2 \)[/tex]
- New [tex]\( y \)[/tex]-coordinate: [tex]\( -1 - 2 = -3 \)[/tex]
5. Write down the new coordinates of [tex]\( P' \)[/tex]:
The new coordinates of [tex]\( P' \)[/tex] after applying the translation are [tex]\((1, -3)\)[/tex].
Therefore, the coordinates of [tex]\( P' \)[/tex] are:
[tex]\[ P' (1, -3) \][/tex]
Hence, the correct answer is:
[tex]\[ P^{\prime} (1, -3) \][/tex]
1. Identify the initial coordinates of point [tex]\( P \)[/tex]:
Point [tex]\( P \)[/tex] has initial coordinates [tex]\((6, -1)\)[/tex].
2. Apply the translation rule:
According to the translation rule, each coordinate of point [tex]\( P \)[/tex] needs to be adjusted as follows:
- The [tex]\( x \)[/tex]-coordinate is decreased by 5.
- The [tex]\( y \)[/tex]-coordinate is decreased by 2.
3. Calculate the new [tex]\( x \)[/tex]-coordinate:
- Initial [tex]\( x \)[/tex]-coordinate: 6
- Translation rule: [tex]\( x \rightarrow x - 5 \)[/tex]
- New [tex]\( x \)[/tex]-coordinate: [tex]\( 6 - 5 = 1 \)[/tex]
4. Calculate the new [tex]\( y \)[/tex]-coordinate:
- Initial [tex]\( y \)[/tex]-coordinate: -1
- Translation rule: [tex]\( y \rightarrow y - 2 \)[/tex]
- New [tex]\( y \)[/tex]-coordinate: [tex]\( -1 - 2 = -3 \)[/tex]
5. Write down the new coordinates of [tex]\( P' \)[/tex]:
The new coordinates of [tex]\( P' \)[/tex] after applying the translation are [tex]\((1, -3)\)[/tex].
Therefore, the coordinates of [tex]\( P' \)[/tex] are:
[tex]\[ P' (1, -3) \][/tex]
Hence, the correct answer is:
[tex]\[ P^{\prime} (1, -3) \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.