Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure, let's calculate each part step by step. We'll work with the general data set [tex]\( x = \{ x_1, x_2, x_3, \ldots, x_N \} \)[/tex].
### Step 1: Calculate the Mean ([tex]\(\mu\)[/tex])
The mean [tex]\(\mu\)[/tex] of the data set is given by:
[tex]\[ \mu = \frac{1}{N} \sum_{i=1}^{N} x_i \][/tex]
### Step 2: Calculate the Numerator
The numerator of the variance formula is:
[tex]\[ \sum_{i=1}^{N} (x_i - \mu)^2 \][/tex]
### Step 3: Calculate the Denominator
The denominator of the variance formula is simply:
[tex]\[ N \][/tex]
### Step 4: Calculate the Variance ([tex]\(\sigma^2\)[/tex])
The variance is given by:
[tex]\[ \sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N} \][/tex]
Let's put this into practice with a specific example. Consider a data set [tex]\( x = \{ 2, 4, 4, 4, 5, 5, 7, 9 \} \)[/tex].
1. Calculate the mean ([tex]\(\mu\)[/tex]):
[tex]\[ \mu = \frac{2 + 4 + 4 + 4 + 5 + 5 + 7 + 9}{8} = \frac{40}{8} = 5 \][/tex]
2. Calculate the numerator:
[tex]\[ \sum_{i=1}^{N} (x_i - \mu)^2 = (2 - 5)^2 + (4 - 5)^2 + (4 - 5)^2 + (4 - 5)^2 + (5 - 5)^2 + (5 - 5)^2 + (7 - 5)^2 + (9 - 5)^2 \][/tex]
[tex]\[ = (-3)^2 + (-1)^2 + (-1)^2 + (-1)^2 + (0)^2 + (0)^2 + (2)^2 + (4)^2 \][/tex]
[tex]\[ = 9 + 1 + 1 + 1 + 0 + 0 + 4 + 16 \][/tex]
[tex]\[ = 32 \][/tex]
3. Calculate the denominator:
[tex]\[ N = 8 \][/tex]
4. Calculate the variance ([tex]\(\sigma^2\)[/tex]):
[tex]\[ \sigma^2 = \frac{32}{8} = 4 \][/tex]
### Summary
- Numerator: [tex]\( 32 \)[/tex]
- Denominator: [tex]\( 8 \)[/tex]
- Variance: [tex]\( 4 \)[/tex]
### Step 1: Calculate the Mean ([tex]\(\mu\)[/tex])
The mean [tex]\(\mu\)[/tex] of the data set is given by:
[tex]\[ \mu = \frac{1}{N} \sum_{i=1}^{N} x_i \][/tex]
### Step 2: Calculate the Numerator
The numerator of the variance formula is:
[tex]\[ \sum_{i=1}^{N} (x_i - \mu)^2 \][/tex]
### Step 3: Calculate the Denominator
The denominator of the variance formula is simply:
[tex]\[ N \][/tex]
### Step 4: Calculate the Variance ([tex]\(\sigma^2\)[/tex])
The variance is given by:
[tex]\[ \sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N} \][/tex]
Let's put this into practice with a specific example. Consider a data set [tex]\( x = \{ 2, 4, 4, 4, 5, 5, 7, 9 \} \)[/tex].
1. Calculate the mean ([tex]\(\mu\)[/tex]):
[tex]\[ \mu = \frac{2 + 4 + 4 + 4 + 5 + 5 + 7 + 9}{8} = \frac{40}{8} = 5 \][/tex]
2. Calculate the numerator:
[tex]\[ \sum_{i=1}^{N} (x_i - \mu)^2 = (2 - 5)^2 + (4 - 5)^2 + (4 - 5)^2 + (4 - 5)^2 + (5 - 5)^2 + (5 - 5)^2 + (7 - 5)^2 + (9 - 5)^2 \][/tex]
[tex]\[ = (-3)^2 + (-1)^2 + (-1)^2 + (-1)^2 + (0)^2 + (0)^2 + (2)^2 + (4)^2 \][/tex]
[tex]\[ = 9 + 1 + 1 + 1 + 0 + 0 + 4 + 16 \][/tex]
[tex]\[ = 32 \][/tex]
3. Calculate the denominator:
[tex]\[ N = 8 \][/tex]
4. Calculate the variance ([tex]\(\sigma^2\)[/tex]):
[tex]\[ \sigma^2 = \frac{32}{8} = 4 \][/tex]
### Summary
- Numerator: [tex]\( 32 \)[/tex]
- Denominator: [tex]\( 8 \)[/tex]
- Variance: [tex]\( 4 \)[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.