Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

What are the zeros of [tex]\( f(x) = x^2 + x - 12 \)[/tex]?

A. [tex]\( x = -2 \)[/tex] and [tex]\( x = 6 \)[/tex]

B. [tex]\( x = -6 \)[/tex] and [tex]\( x = 2 \)[/tex]

C. [tex]\( x = -4 \)[/tex] and [tex]\( x = 3 \)[/tex]

D. [tex]\( x = -3 \)[/tex] and [tex]\( x = 4 \)[/tex]


Sagot :

In order to find the zeros of the function [tex]\( f(x) = x^2 + x - 12 \)[/tex], we need to solve the equation [tex]\( x^2 + x - 12 = 0 \)[/tex]. A zero of the function is a value of [tex]\( x \)[/tex] that makes the function equal to zero. This translates to finding the solutions [tex]\( x \)[/tex] for the quadratic equation.

Let's review the quadratic equation:
[tex]\[ x^2 + x - 12 = 0 \][/tex]

We can use the quadratic formula, which is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] are the coefficients from the quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex].

For the given equation [tex]\( x^2 + x - 12 = 0 \)[/tex]:
- [tex]\( a = 1 \)[/tex]
- [tex]\( b = 1 \)[/tex]
- [tex]\( c = -12 \)[/tex]

We plug these values into the quadratic formula:
[tex]\[ x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-12)}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{-1 \pm \sqrt{1 + 48}}{2} \][/tex]
[tex]\[ x = \frac{-1 \pm \sqrt{49}}{2} \][/tex]
[tex]\[ x = \frac{-1 \pm 7}{2} \][/tex]

Now, consider the two scenarios for the plus and minus in the equation:
1. [tex]\( x = \frac{-1 + 7}{2} = \frac{6}{2} = 3 \)[/tex]
2. [tex]\( x = \frac{-1 - 7}{2} = \frac{-8}{2} = -4 \)[/tex]

Therefore, the solutions to the equation are:
[tex]\[ x = 3 \][/tex]
[tex]\[ x = -4 \][/tex]

So, the zeros of the function [tex]\( f(x) = x^2 + x - 12 \)[/tex] are [tex]\( x = -4 \)[/tex] and [tex]\( x = 3 \)[/tex].

The correct answer is:
C. [tex]\( x = -4 \)[/tex] and [tex]\( x = 3 \)[/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.