Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
In order to find the zeros of the function [tex]\( f(x) = x^2 + x - 12 \)[/tex], we need to solve the equation [tex]\( x^2 + x - 12 = 0 \)[/tex]. A zero of the function is a value of [tex]\( x \)[/tex] that makes the function equal to zero. This translates to finding the solutions [tex]\( x \)[/tex] for the quadratic equation.
Let's review the quadratic equation:
[tex]\[ x^2 + x - 12 = 0 \][/tex]
We can use the quadratic formula, which is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] are the coefficients from the quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex].
For the given equation [tex]\( x^2 + x - 12 = 0 \)[/tex]:
- [tex]\( a = 1 \)[/tex]
- [tex]\( b = 1 \)[/tex]
- [tex]\( c = -12 \)[/tex]
We plug these values into the quadratic formula:
[tex]\[ x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-12)}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{-1 \pm \sqrt{1 + 48}}{2} \][/tex]
[tex]\[ x = \frac{-1 \pm \sqrt{49}}{2} \][/tex]
[tex]\[ x = \frac{-1 \pm 7}{2} \][/tex]
Now, consider the two scenarios for the plus and minus in the equation:
1. [tex]\( x = \frac{-1 + 7}{2} = \frac{6}{2} = 3 \)[/tex]
2. [tex]\( x = \frac{-1 - 7}{2} = \frac{-8}{2} = -4 \)[/tex]
Therefore, the solutions to the equation are:
[tex]\[ x = 3 \][/tex]
[tex]\[ x = -4 \][/tex]
So, the zeros of the function [tex]\( f(x) = x^2 + x - 12 \)[/tex] are [tex]\( x = -4 \)[/tex] and [tex]\( x = 3 \)[/tex].
The correct answer is:
C. [tex]\( x = -4 \)[/tex] and [tex]\( x = 3 \)[/tex]
Let's review the quadratic equation:
[tex]\[ x^2 + x - 12 = 0 \][/tex]
We can use the quadratic formula, which is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] are the coefficients from the quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex].
For the given equation [tex]\( x^2 + x - 12 = 0 \)[/tex]:
- [tex]\( a = 1 \)[/tex]
- [tex]\( b = 1 \)[/tex]
- [tex]\( c = -12 \)[/tex]
We plug these values into the quadratic formula:
[tex]\[ x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-12)}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{-1 \pm \sqrt{1 + 48}}{2} \][/tex]
[tex]\[ x = \frac{-1 \pm \sqrt{49}}{2} \][/tex]
[tex]\[ x = \frac{-1 \pm 7}{2} \][/tex]
Now, consider the two scenarios for the plus and minus in the equation:
1. [tex]\( x = \frac{-1 + 7}{2} = \frac{6}{2} = 3 \)[/tex]
2. [tex]\( x = \frac{-1 - 7}{2} = \frac{-8}{2} = -4 \)[/tex]
Therefore, the solutions to the equation are:
[tex]\[ x = 3 \][/tex]
[tex]\[ x = -4 \][/tex]
So, the zeros of the function [tex]\( f(x) = x^2 + x - 12 \)[/tex] are [tex]\( x = -4 \)[/tex] and [tex]\( x = 3 \)[/tex].
The correct answer is:
C. [tex]\( x = -4 \)[/tex] and [tex]\( x = 3 \)[/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.