Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the value of [tex]\(\frac{1}{(a \alpha + b)^2} + \frac{1}{(a \beta + b)^2}\)[/tex] given that [tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex] are the roots of the quadratic equation [tex]\(a x^2 + b x + c = 0\)[/tex], let's walk through the process step-by-step.
1. Identify the roots of the quadratic equation:
[tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex] are roots of the equation [tex]\(a x^2 + b x + c = 0\)[/tex]. Therefore, they satisfy the equation:
[tex]\[ a \alpha^2 + b \alpha + c = 0 \][/tex]
[tex]\[ a \beta^2 + b \beta + c = 0 \][/tex]
2. Express the quadratic equation in factored form:
The quadratic equation can be written as:
[tex]\[ a (x - \alpha) (x - \beta) = 0 \][/tex]
Expanding this, we get:
[tex]\[ ax^2 - a(\alpha + \beta)x + a \alpha \beta = 0 \][/tex]
3. Comparing coefficients:
By comparing the coefficients with the standard form [tex]\(a x^2 + b x + c = 0\)[/tex], we get:
[tex]\[ -a(\alpha + \beta) = b \implies \alpha + \beta = -\frac{b}{a} \][/tex]
[tex]\[ a \alpha \beta = c \implies \alpha \beta = \frac{c}{a} \][/tex]
4. Form the initial expression:
We need to evaluate:
[tex]\[ \frac{1}{(a \alpha + b)^2} + \frac{1}{(a \beta + b)^2} \][/tex]
5. Utilize the properties of roots:
From the properties of the roots,
[tex]\[ a \alpha^2 + b \alpha + c = 0 \implies a \alpha^2 = -b \alpha - c \implies a \alpha^2 + b \alpha = -c \][/tex]
This helps in simplifying [tex]\(a \alpha + b\)[/tex]:
[tex]\[ a \alpha + b = -\frac{c}{\alpha} \][/tex]
Similarly,
[tex]\[ a \beta + b = -\frac{c}{\beta} \][/tex]
6. Substitute these expressions into the target expression:
Substitute [tex]\(a \alpha + b = -\frac{c}{\alpha}\)[/tex] and [tex]\(a \beta + b = -\frac{c}{\beta}\)[/tex]:
[tex]\[ \frac{1}{(a \alpha + b)^2} + \frac{1}{(a \beta + b)^2} = \frac{1}{\left(-\frac{c}{\alpha}\right)^2} + \frac{1}{\left(-\frac{c}{\beta}\right)^2} \][/tex]
Simplifying,
[tex]\[ \frac{\alpha^2}{c^2} + \frac{\beta^2}{c^2} = \frac{\alpha^2 + \beta^2}{c^2} \][/tex]
7. Simplify the terms [tex]\(\alpha^2 + \beta^2\)[/tex]:
Using the identity [tex]\(\alpha + \beta\)[/tex]^2 = \alpha^2 + \beta^2 + 2\alpha\beta,
[tex]\[ (\alpha + \beta)^2 = \alpha^2 + \beta^2 + 2\alpha \beta \implies \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha \beta \][/tex]
Substitute [tex]\(\alpha + \beta = -\frac{b}{a}\)[/tex] and [tex]\(\alpha \beta = \frac{c}{a}\)[/tex],
[tex]\[ \alpha^2 + \beta^2 = \left(-\frac{b}{a}\right)^2 - 2\left(\frac{c}{a}\right) = \frac{b^2}{a^2} - \frac{2c}{a} \][/tex]
8. Final substitution:
Substitute [tex]\(\alpha^2 + \beta^2\)[/tex] back into [tex]\(\frac{\alpha^2 + \beta^2}{c^2}\)[/tex],
[tex]\[ \frac{b^2/a^2 - 2c/a}{c^2} = \frac{b^2 - 2ac}{a^2 c^2} = \frac{b^2 - 2ac}{a^2 c^2} \][/tex]
So the value is:
[tex]\[ \frac{1}{(a \alpha + b)^2} + \frac{1}{(a \beta + b)^2} = (a \beta + b)^{-2} + (a \alpha + b)^{-2} \][/tex]
This completes our detailed process.
1. Identify the roots of the quadratic equation:
[tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex] are roots of the equation [tex]\(a x^2 + b x + c = 0\)[/tex]. Therefore, they satisfy the equation:
[tex]\[ a \alpha^2 + b \alpha + c = 0 \][/tex]
[tex]\[ a \beta^2 + b \beta + c = 0 \][/tex]
2. Express the quadratic equation in factored form:
The quadratic equation can be written as:
[tex]\[ a (x - \alpha) (x - \beta) = 0 \][/tex]
Expanding this, we get:
[tex]\[ ax^2 - a(\alpha + \beta)x + a \alpha \beta = 0 \][/tex]
3. Comparing coefficients:
By comparing the coefficients with the standard form [tex]\(a x^2 + b x + c = 0\)[/tex], we get:
[tex]\[ -a(\alpha + \beta) = b \implies \alpha + \beta = -\frac{b}{a} \][/tex]
[tex]\[ a \alpha \beta = c \implies \alpha \beta = \frac{c}{a} \][/tex]
4. Form the initial expression:
We need to evaluate:
[tex]\[ \frac{1}{(a \alpha + b)^2} + \frac{1}{(a \beta + b)^2} \][/tex]
5. Utilize the properties of roots:
From the properties of the roots,
[tex]\[ a \alpha^2 + b \alpha + c = 0 \implies a \alpha^2 = -b \alpha - c \implies a \alpha^2 + b \alpha = -c \][/tex]
This helps in simplifying [tex]\(a \alpha + b\)[/tex]:
[tex]\[ a \alpha + b = -\frac{c}{\alpha} \][/tex]
Similarly,
[tex]\[ a \beta + b = -\frac{c}{\beta} \][/tex]
6. Substitute these expressions into the target expression:
Substitute [tex]\(a \alpha + b = -\frac{c}{\alpha}\)[/tex] and [tex]\(a \beta + b = -\frac{c}{\beta}\)[/tex]:
[tex]\[ \frac{1}{(a \alpha + b)^2} + \frac{1}{(a \beta + b)^2} = \frac{1}{\left(-\frac{c}{\alpha}\right)^2} + \frac{1}{\left(-\frac{c}{\beta}\right)^2} \][/tex]
Simplifying,
[tex]\[ \frac{\alpha^2}{c^2} + \frac{\beta^2}{c^2} = \frac{\alpha^2 + \beta^2}{c^2} \][/tex]
7. Simplify the terms [tex]\(\alpha^2 + \beta^2\)[/tex]:
Using the identity [tex]\(\alpha + \beta\)[/tex]^2 = \alpha^2 + \beta^2 + 2\alpha\beta,
[tex]\[ (\alpha + \beta)^2 = \alpha^2 + \beta^2 + 2\alpha \beta \implies \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha \beta \][/tex]
Substitute [tex]\(\alpha + \beta = -\frac{b}{a}\)[/tex] and [tex]\(\alpha \beta = \frac{c}{a}\)[/tex],
[tex]\[ \alpha^2 + \beta^2 = \left(-\frac{b}{a}\right)^2 - 2\left(\frac{c}{a}\right) = \frac{b^2}{a^2} - \frac{2c}{a} \][/tex]
8. Final substitution:
Substitute [tex]\(\alpha^2 + \beta^2\)[/tex] back into [tex]\(\frac{\alpha^2 + \beta^2}{c^2}\)[/tex],
[tex]\[ \frac{b^2/a^2 - 2c/a}{c^2} = \frac{b^2 - 2ac}{a^2 c^2} = \frac{b^2 - 2ac}{a^2 c^2} \][/tex]
So the value is:
[tex]\[ \frac{1}{(a \alpha + b)^2} + \frac{1}{(a \beta + b)^2} = (a \beta + b)^{-2} + (a \alpha + b)^{-2} \][/tex]
This completes our detailed process.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.