Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the partial pressure of gas [tex]\( Y \)[/tex], we can use Dalton's Law of Partial Pressures. This law states that the partial pressure of each gas in a mixture is proportional to its mole fraction in the mixture. The formula is given as follows:
[tex]\[ \frac{P_a}{P_T} = \frac{n_a}{n_T} \][/tex]
Where:
- [tex]\( P_a \)[/tex] is the partial pressure of gas [tex]\( a \)[/tex]
- [tex]\( P_T \)[/tex] is the total pressure
- [tex]\( n_a \)[/tex] is the number of moles of gas [tex]\( a \)[/tex]
- [tex]\( n_T \)[/tex] is the total number of moles of gases
Given:
- [tex]\( n_X = 2.0 \)[/tex] moles (gas [tex]\( X \)[/tex])
- [tex]\( n_Y = 6.0 \)[/tex] moles (gas [tex]\( Y \)[/tex])
- [tex]\( P_T = 2.1 \)[/tex] atm (total pressure)
First, let's compute the total number of moles [tex]\( n_T \)[/tex]:
[tex]\[ n_T = n_X + n_Y = 2.0 + 6.0 = 8.0 \][/tex]
Next, we use the mole fraction of gas [tex]\( Y \)[/tex] to determine its partial pressure:
[tex]\[ \frac{P_Y}{P_T} = \frac{n_Y}{n_T} \][/tex]
Solving for [tex]\( P_Y \)[/tex]:
[tex]\[ P_Y = \left(\frac{n_Y}{n_T}\right) \cdot P_T \][/tex]
Substituting the given values:
[tex]\[ P_Y = \left(\frac{6.0}{8.0}\right) \cdot 2.1 \][/tex]
[tex]\[ P_Y = 0.75 \cdot 2.1 \][/tex]
[tex]\[ P_Y = 1.575 \, \text{atm} \][/tex]
Thus, the partial pressure of gas [tex]\( Y \)[/tex] is approximately [tex]\( 1.575 \, \text{atm} \)[/tex].
From the given choices, [tex]\( 1.575 \, \text{atm} \)[/tex] is closest to [tex]\( 1.6 \, \text{atm} \)[/tex].
Therefore, the answer is:
[tex]\[ 1.6 \, \text{atm} \][/tex]
[tex]\[ \frac{P_a}{P_T} = \frac{n_a}{n_T} \][/tex]
Where:
- [tex]\( P_a \)[/tex] is the partial pressure of gas [tex]\( a \)[/tex]
- [tex]\( P_T \)[/tex] is the total pressure
- [tex]\( n_a \)[/tex] is the number of moles of gas [tex]\( a \)[/tex]
- [tex]\( n_T \)[/tex] is the total number of moles of gases
Given:
- [tex]\( n_X = 2.0 \)[/tex] moles (gas [tex]\( X \)[/tex])
- [tex]\( n_Y = 6.0 \)[/tex] moles (gas [tex]\( Y \)[/tex])
- [tex]\( P_T = 2.1 \)[/tex] atm (total pressure)
First, let's compute the total number of moles [tex]\( n_T \)[/tex]:
[tex]\[ n_T = n_X + n_Y = 2.0 + 6.0 = 8.0 \][/tex]
Next, we use the mole fraction of gas [tex]\( Y \)[/tex] to determine its partial pressure:
[tex]\[ \frac{P_Y}{P_T} = \frac{n_Y}{n_T} \][/tex]
Solving for [tex]\( P_Y \)[/tex]:
[tex]\[ P_Y = \left(\frac{n_Y}{n_T}\right) \cdot P_T \][/tex]
Substituting the given values:
[tex]\[ P_Y = \left(\frac{6.0}{8.0}\right) \cdot 2.1 \][/tex]
[tex]\[ P_Y = 0.75 \cdot 2.1 \][/tex]
[tex]\[ P_Y = 1.575 \, \text{atm} \][/tex]
Thus, the partial pressure of gas [tex]\( Y \)[/tex] is approximately [tex]\( 1.575 \, \text{atm} \)[/tex].
From the given choices, [tex]\( 1.575 \, \text{atm} \)[/tex] is closest to [tex]\( 1.6 \, \text{atm} \)[/tex].
Therefore, the answer is:
[tex]\[ 1.6 \, \text{atm} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.