Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the partial pressure of gas [tex]\( Y \)[/tex], we can use Dalton's Law of Partial Pressures. This law states that the partial pressure of each gas in a mixture is proportional to its mole fraction in the mixture. The formula is given as follows:
[tex]\[ \frac{P_a}{P_T} = \frac{n_a}{n_T} \][/tex]
Where:
- [tex]\( P_a \)[/tex] is the partial pressure of gas [tex]\( a \)[/tex]
- [tex]\( P_T \)[/tex] is the total pressure
- [tex]\( n_a \)[/tex] is the number of moles of gas [tex]\( a \)[/tex]
- [tex]\( n_T \)[/tex] is the total number of moles of gases
Given:
- [tex]\( n_X = 2.0 \)[/tex] moles (gas [tex]\( X \)[/tex])
- [tex]\( n_Y = 6.0 \)[/tex] moles (gas [tex]\( Y \)[/tex])
- [tex]\( P_T = 2.1 \)[/tex] atm (total pressure)
First, let's compute the total number of moles [tex]\( n_T \)[/tex]:
[tex]\[ n_T = n_X + n_Y = 2.0 + 6.0 = 8.0 \][/tex]
Next, we use the mole fraction of gas [tex]\( Y \)[/tex] to determine its partial pressure:
[tex]\[ \frac{P_Y}{P_T} = \frac{n_Y}{n_T} \][/tex]
Solving for [tex]\( P_Y \)[/tex]:
[tex]\[ P_Y = \left(\frac{n_Y}{n_T}\right) \cdot P_T \][/tex]
Substituting the given values:
[tex]\[ P_Y = \left(\frac{6.0}{8.0}\right) \cdot 2.1 \][/tex]
[tex]\[ P_Y = 0.75 \cdot 2.1 \][/tex]
[tex]\[ P_Y = 1.575 \, \text{atm} \][/tex]
Thus, the partial pressure of gas [tex]\( Y \)[/tex] is approximately [tex]\( 1.575 \, \text{atm} \)[/tex].
From the given choices, [tex]\( 1.575 \, \text{atm} \)[/tex] is closest to [tex]\( 1.6 \, \text{atm} \)[/tex].
Therefore, the answer is:
[tex]\[ 1.6 \, \text{atm} \][/tex]
[tex]\[ \frac{P_a}{P_T} = \frac{n_a}{n_T} \][/tex]
Where:
- [tex]\( P_a \)[/tex] is the partial pressure of gas [tex]\( a \)[/tex]
- [tex]\( P_T \)[/tex] is the total pressure
- [tex]\( n_a \)[/tex] is the number of moles of gas [tex]\( a \)[/tex]
- [tex]\( n_T \)[/tex] is the total number of moles of gases
Given:
- [tex]\( n_X = 2.0 \)[/tex] moles (gas [tex]\( X \)[/tex])
- [tex]\( n_Y = 6.0 \)[/tex] moles (gas [tex]\( Y \)[/tex])
- [tex]\( P_T = 2.1 \)[/tex] atm (total pressure)
First, let's compute the total number of moles [tex]\( n_T \)[/tex]:
[tex]\[ n_T = n_X + n_Y = 2.0 + 6.0 = 8.0 \][/tex]
Next, we use the mole fraction of gas [tex]\( Y \)[/tex] to determine its partial pressure:
[tex]\[ \frac{P_Y}{P_T} = \frac{n_Y}{n_T} \][/tex]
Solving for [tex]\( P_Y \)[/tex]:
[tex]\[ P_Y = \left(\frac{n_Y}{n_T}\right) \cdot P_T \][/tex]
Substituting the given values:
[tex]\[ P_Y = \left(\frac{6.0}{8.0}\right) \cdot 2.1 \][/tex]
[tex]\[ P_Y = 0.75 \cdot 2.1 \][/tex]
[tex]\[ P_Y = 1.575 \, \text{atm} \][/tex]
Thus, the partial pressure of gas [tex]\( Y \)[/tex] is approximately [tex]\( 1.575 \, \text{atm} \)[/tex].
From the given choices, [tex]\( 1.575 \, \text{atm} \)[/tex] is closest to [tex]\( 1.6 \, \text{atm} \)[/tex].
Therefore, the answer is:
[tex]\[ 1.6 \, \text{atm} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.