Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve the given problem, let's analyze the functions that describe the number of components assembled by new and experienced employees, and find the difference between these two functions.
The function [tex]\( N(t) \)[/tex] describes the number of components a new employee can assemble per day:
[tex]\[ N(t) = \frac{50t}{t + 4} \][/tex]
The function [tex]\( E(t) \)[/tex] describes the number of components an experienced employee can assemble per day:
[tex]\[ E(t) = \frac{70t}{t + 3} \][/tex]
We need to find the difference between the number of components assembled by experienced and new employees:
[tex]\[ D(t) = E(t) - N(t) \][/tex]
Substitute the functions [tex]\( N(t) \)[/tex] and [tex]\( E(t) \)[/tex] into the difference equation:
[tex]\[ D(t) = \frac{70t}{t + 3} - \frac{50t}{t + 4} \][/tex]
To perform the subtraction, find a common denominator, which is [tex]\((t + 3)(t + 4)\)[/tex]. First, rewrite each term with the common denominator:
[tex]\[ \frac{70t}{t + 3} = \frac{70t(t + 4)}{(t + 3)(t + 4)} \][/tex]
[tex]\[ \frac{50t}{t + 4} = \frac{50t(t + 3)}{(t + 3)(t + 4)} \][/tex]
Now, express the difference with the common denominator:
[tex]\[ D(t) = \frac{70t(t + 4)}{(t + 3)(t + 4)} - \frac{50t(t + 3)}{(t + 3)(t + 4)} \][/tex]
Combine the numerators over the common denominator:
[tex]\[ D(t) = \frac{70t(t + 4) - 50t(t + 3)}{(t + 3)(t + 4)} \][/tex]
Expand and simplify the numerator:
[tex]\[ 70t(t + 4) = 70t^2 + 280t \][/tex]
[tex]\[ 50t(t + 3) = 50t^2 + 150t \][/tex]
Subtract these expressions:
[tex]\[ 70t^2 + 280t - (50t^2 + 150t) = 70t^2 + 280t - 50t^2 - 150t \][/tex]
[tex]\[ = 20t^2 + 130t \][/tex]
Thus, the difference function [tex]\( D(t) \)[/tex] simplifies to:
[tex]\[ D(t) = \frac{20t^2 + 130t}{(t + 3)(t + 4)} \][/tex]
Factor out the common term [tex]\( 10t \)[/tex] in the numerator:
[tex]\[ D(t) = \frac{10t(2t + 13)}{(t + 3)(t + 4)} \][/tex]
Thus, the function that describes the difference in the number of components assembled per day by experienced and new employees is:
[tex]\[ D(t) = \frac{10t(2t + 13)}{(t + 3)(t + 4)} \][/tex]
Hence, the correct answer is:
[tex]\[ B. \, D(t) = \frac{10t(2t + 13)}{(t + 3)(t + 4)} \][/tex]
The function [tex]\( N(t) \)[/tex] describes the number of components a new employee can assemble per day:
[tex]\[ N(t) = \frac{50t}{t + 4} \][/tex]
The function [tex]\( E(t) \)[/tex] describes the number of components an experienced employee can assemble per day:
[tex]\[ E(t) = \frac{70t}{t + 3} \][/tex]
We need to find the difference between the number of components assembled by experienced and new employees:
[tex]\[ D(t) = E(t) - N(t) \][/tex]
Substitute the functions [tex]\( N(t) \)[/tex] and [tex]\( E(t) \)[/tex] into the difference equation:
[tex]\[ D(t) = \frac{70t}{t + 3} - \frac{50t}{t + 4} \][/tex]
To perform the subtraction, find a common denominator, which is [tex]\((t + 3)(t + 4)\)[/tex]. First, rewrite each term with the common denominator:
[tex]\[ \frac{70t}{t + 3} = \frac{70t(t + 4)}{(t + 3)(t + 4)} \][/tex]
[tex]\[ \frac{50t}{t + 4} = \frac{50t(t + 3)}{(t + 3)(t + 4)} \][/tex]
Now, express the difference with the common denominator:
[tex]\[ D(t) = \frac{70t(t + 4)}{(t + 3)(t + 4)} - \frac{50t(t + 3)}{(t + 3)(t + 4)} \][/tex]
Combine the numerators over the common denominator:
[tex]\[ D(t) = \frac{70t(t + 4) - 50t(t + 3)}{(t + 3)(t + 4)} \][/tex]
Expand and simplify the numerator:
[tex]\[ 70t(t + 4) = 70t^2 + 280t \][/tex]
[tex]\[ 50t(t + 3) = 50t^2 + 150t \][/tex]
Subtract these expressions:
[tex]\[ 70t^2 + 280t - (50t^2 + 150t) = 70t^2 + 280t - 50t^2 - 150t \][/tex]
[tex]\[ = 20t^2 + 130t \][/tex]
Thus, the difference function [tex]\( D(t) \)[/tex] simplifies to:
[tex]\[ D(t) = \frac{20t^2 + 130t}{(t + 3)(t + 4)} \][/tex]
Factor out the common term [tex]\( 10t \)[/tex] in the numerator:
[tex]\[ D(t) = \frac{10t(2t + 13)}{(t + 3)(t + 4)} \][/tex]
Thus, the function that describes the difference in the number of components assembled per day by experienced and new employees is:
[tex]\[ D(t) = \frac{10t(2t + 13)}{(t + 3)(t + 4)} \][/tex]
Hence, the correct answer is:
[tex]\[ B. \, D(t) = \frac{10t(2t + 13)}{(t + 3)(t + 4)} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.