Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve this problem, we will first understand the concept of the complement of an event in a sample space.
### Step-by-Step Solution
1. Identify the Sample Space:
The sample space in this context is the set of all possible outcomes when drawing a slip of paper from the bag. Since each slip contains a unique number from 1 to 8, the sample space is:
[tex]\( \text{Sample Space} = \{1, 2, 3, 4, 5, 6, 7, 8\} \)[/tex]
2. Define the Event:
The specific event we are considering is drawing the number 6. Therefore, the event set can be written as:
[tex]\( \text{Event Set} = \{6\} \)[/tex]
3. Determine the Complement of the Event:
The complement of an event is the set of all outcomes in the sample space that are not in the event set. This means we need to exclude the number 6 from the sample space.
4. Form Subset A:
Subset [tex]\( A \)[/tex] will consist of all numbers from the sample space except for the number 6. Therefore, remove 6 from the sample space [tex]\( \{1, 2, 3, 4, 5, 6, 7, 8\} \)[/tex].
5. List the Elements in Subset A:
Removing 6 from the sample space, we get:
[tex]\[ A = \{1, 2, 3, 4, 5, 7, 8\} \][/tex]
### Conclusion:
By following the steps outlined above, we determine that subset [tex]\( A \)[/tex] representing the complement of the event in which the number 6 is drawn from the bag is:
[tex]\[ A = \{1, 2, 3, 4, 5, 7, 8\} \][/tex]
Thus, the correct option is:
\[ \boxed{A = \{1, 2, 3, 4, 5, 7, 8\}} \
### Step-by-Step Solution
1. Identify the Sample Space:
The sample space in this context is the set of all possible outcomes when drawing a slip of paper from the bag. Since each slip contains a unique number from 1 to 8, the sample space is:
[tex]\( \text{Sample Space} = \{1, 2, 3, 4, 5, 6, 7, 8\} \)[/tex]
2. Define the Event:
The specific event we are considering is drawing the number 6. Therefore, the event set can be written as:
[tex]\( \text{Event Set} = \{6\} \)[/tex]
3. Determine the Complement of the Event:
The complement of an event is the set of all outcomes in the sample space that are not in the event set. This means we need to exclude the number 6 from the sample space.
4. Form Subset A:
Subset [tex]\( A \)[/tex] will consist of all numbers from the sample space except for the number 6. Therefore, remove 6 from the sample space [tex]\( \{1, 2, 3, 4, 5, 6, 7, 8\} \)[/tex].
5. List the Elements in Subset A:
Removing 6 from the sample space, we get:
[tex]\[ A = \{1, 2, 3, 4, 5, 7, 8\} \][/tex]
### Conclusion:
By following the steps outlined above, we determine that subset [tex]\( A \)[/tex] representing the complement of the event in which the number 6 is drawn from the bag is:
[tex]\[ A = \{1, 2, 3, 4, 5, 7, 8\} \][/tex]
Thus, the correct option is:
\[ \boxed{A = \{1, 2, 3, 4, 5, 7, 8\}} \
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.