Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve the given linear programming problem, follow these step-by-step instructions:
### Step 1: Convert the Problem to Standard Form
The original problem is:
[tex]\[ \begin{array}{ll} \text{Maximize:} & z = 6x + 2y \\ \text{subject to:} & 6x - y \leq 15 \\ & 2x + y \geq 10 \\ & x \geq 2 \\ & y \leq 9 \end{array} \][/tex]
First, convert all constraints to the form [tex]\(Ax \leq b\)[/tex].
The second constraint [tex]\(2x + y \geq 10\)[/tex] can be rewritten as:
[tex]\[ -2x - y \leq -10 \][/tex]
Thus, our inequalities become:
[tex]\[ \begin{array}{ll} 6x - y \leq 15 \\ -2x - y \leq -10 \\ x \geq 2 \\ y \leq 9 \end{array} \][/tex]
### Step 2: Identify Variable Bounds
From the inequalities:
- [tex]\( x \geq 2 \)[/tex] implies a lower bound for [tex]\( x \)[/tex] of 2.
- [tex]\( y \leq 9 \)[/tex] implies an upper bound for [tex]\( y \)[/tex] of 9.
### Step 3: Solve the System of Linear Inequalities
Use linear programming techniques to find the optimal values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
First, consider the intersection of the constraints by graphing or mathematical methods.
To find the feasible region, solve the system of equations formed by the intersecting constraints:
1. Solve [tex]\( 6x - y = 15 \)[/tex] and [tex]\( -2x - y = -10 \)[/tex]:
[tex]\[ \begin{align*} 6x - y &= 15 \quad \text{(i)} \\ -2x - y &= -10 \quad \text{(ii)} \end{align*} \][/tex]
Add equation (i) and (ii):
[tex]\[ 6x - y - 2x - y = 15 - 10 \][/tex]
[tex]\[ 4x - 2y = 5 \][/tex]
[tex]\[ 4x = 20 \Rightarrow x = 4 \][/tex]
Plug [tex]\( x = 4 \)[/tex] back into one of the original equations:
[tex]\[ 6(4) - y = 15 \][/tex]
[tex]\[ 24 - y = 15 \][/tex]
[tex]\[ y = 9 \][/tex]
The intersection point is [tex]\( (4, 9) \)[/tex].
### Step 4: Evaluate the Objective Function at Feasible Corners
Considering all constraints and variable bounds, the key feasible points you need to evaluate are located at:
- [tex]\( (2, 9) \)[/tex] (from [tex]\( x \geq 2 \)[/tex] and [tex]\( y \leq 9 \)[/tex])
- [tex]\( (4, 9) \)[/tex] (from the intersection above)
Evaluate [tex]\( z = 6x + 2y \)[/tex] at these points:
- For [tex]\( (2, 9) \)[/tex]:
[tex]\[ z = 6(2) + 2(9) = 12 + 18 = 30 \][/tex]
- For [tex]\( (4, 9) \)[/tex]:
[tex]\[ z = 6(4) + 2(9) = 24 + 18 = 42 \][/tex]
### Step 5: Determine the Maximum Value
The maximum value of [tex]\( z \)[/tex] among the feasible points is [tex]\( 42 \)[/tex], achieved at [tex]\( (4, 9) \)[/tex].
Hence, the maximum value is:
[tex]\[ \boxed{42} \][/tex]
### Step 1: Convert the Problem to Standard Form
The original problem is:
[tex]\[ \begin{array}{ll} \text{Maximize:} & z = 6x + 2y \\ \text{subject to:} & 6x - y \leq 15 \\ & 2x + y \geq 10 \\ & x \geq 2 \\ & y \leq 9 \end{array} \][/tex]
First, convert all constraints to the form [tex]\(Ax \leq b\)[/tex].
The second constraint [tex]\(2x + y \geq 10\)[/tex] can be rewritten as:
[tex]\[ -2x - y \leq -10 \][/tex]
Thus, our inequalities become:
[tex]\[ \begin{array}{ll} 6x - y \leq 15 \\ -2x - y \leq -10 \\ x \geq 2 \\ y \leq 9 \end{array} \][/tex]
### Step 2: Identify Variable Bounds
From the inequalities:
- [tex]\( x \geq 2 \)[/tex] implies a lower bound for [tex]\( x \)[/tex] of 2.
- [tex]\( y \leq 9 \)[/tex] implies an upper bound for [tex]\( y \)[/tex] of 9.
### Step 3: Solve the System of Linear Inequalities
Use linear programming techniques to find the optimal values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
First, consider the intersection of the constraints by graphing or mathematical methods.
To find the feasible region, solve the system of equations formed by the intersecting constraints:
1. Solve [tex]\( 6x - y = 15 \)[/tex] and [tex]\( -2x - y = -10 \)[/tex]:
[tex]\[ \begin{align*} 6x - y &= 15 \quad \text{(i)} \\ -2x - y &= -10 \quad \text{(ii)} \end{align*} \][/tex]
Add equation (i) and (ii):
[tex]\[ 6x - y - 2x - y = 15 - 10 \][/tex]
[tex]\[ 4x - 2y = 5 \][/tex]
[tex]\[ 4x = 20 \Rightarrow x = 4 \][/tex]
Plug [tex]\( x = 4 \)[/tex] back into one of the original equations:
[tex]\[ 6(4) - y = 15 \][/tex]
[tex]\[ 24 - y = 15 \][/tex]
[tex]\[ y = 9 \][/tex]
The intersection point is [tex]\( (4, 9) \)[/tex].
### Step 4: Evaluate the Objective Function at Feasible Corners
Considering all constraints and variable bounds, the key feasible points you need to evaluate are located at:
- [tex]\( (2, 9) \)[/tex] (from [tex]\( x \geq 2 \)[/tex] and [tex]\( y \leq 9 \)[/tex])
- [tex]\( (4, 9) \)[/tex] (from the intersection above)
Evaluate [tex]\( z = 6x + 2y \)[/tex] at these points:
- For [tex]\( (2, 9) \)[/tex]:
[tex]\[ z = 6(2) + 2(9) = 12 + 18 = 30 \][/tex]
- For [tex]\( (4, 9) \)[/tex]:
[tex]\[ z = 6(4) + 2(9) = 24 + 18 = 42 \][/tex]
### Step 5: Determine the Maximum Value
The maximum value of [tex]\( z \)[/tex] among the feasible points is [tex]\( 42 \)[/tex], achieved at [tex]\( (4, 9) \)[/tex].
Hence, the maximum value is:
[tex]\[ \boxed{42} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.