Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve the given linear programming problem, follow these step-by-step instructions:
### Step 1: Convert the Problem to Standard Form
The original problem is:
[tex]\[ \begin{array}{ll} \text{Maximize:} & z = 6x + 2y \\ \text{subject to:} & 6x - y \leq 15 \\ & 2x + y \geq 10 \\ & x \geq 2 \\ & y \leq 9 \end{array} \][/tex]
First, convert all constraints to the form [tex]\(Ax \leq b\)[/tex].
The second constraint [tex]\(2x + y \geq 10\)[/tex] can be rewritten as:
[tex]\[ -2x - y \leq -10 \][/tex]
Thus, our inequalities become:
[tex]\[ \begin{array}{ll} 6x - y \leq 15 \\ -2x - y \leq -10 \\ x \geq 2 \\ y \leq 9 \end{array} \][/tex]
### Step 2: Identify Variable Bounds
From the inequalities:
- [tex]\( x \geq 2 \)[/tex] implies a lower bound for [tex]\( x \)[/tex] of 2.
- [tex]\( y \leq 9 \)[/tex] implies an upper bound for [tex]\( y \)[/tex] of 9.
### Step 3: Solve the System of Linear Inequalities
Use linear programming techniques to find the optimal values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
First, consider the intersection of the constraints by graphing or mathematical methods.
To find the feasible region, solve the system of equations formed by the intersecting constraints:
1. Solve [tex]\( 6x - y = 15 \)[/tex] and [tex]\( -2x - y = -10 \)[/tex]:
[tex]\[ \begin{align*} 6x - y &= 15 \quad \text{(i)} \\ -2x - y &= -10 \quad \text{(ii)} \end{align*} \][/tex]
Add equation (i) and (ii):
[tex]\[ 6x - y - 2x - y = 15 - 10 \][/tex]
[tex]\[ 4x - 2y = 5 \][/tex]
[tex]\[ 4x = 20 \Rightarrow x = 4 \][/tex]
Plug [tex]\( x = 4 \)[/tex] back into one of the original equations:
[tex]\[ 6(4) - y = 15 \][/tex]
[tex]\[ 24 - y = 15 \][/tex]
[tex]\[ y = 9 \][/tex]
The intersection point is [tex]\( (4, 9) \)[/tex].
### Step 4: Evaluate the Objective Function at Feasible Corners
Considering all constraints and variable bounds, the key feasible points you need to evaluate are located at:
- [tex]\( (2, 9) \)[/tex] (from [tex]\( x \geq 2 \)[/tex] and [tex]\( y \leq 9 \)[/tex])
- [tex]\( (4, 9) \)[/tex] (from the intersection above)
Evaluate [tex]\( z = 6x + 2y \)[/tex] at these points:
- For [tex]\( (2, 9) \)[/tex]:
[tex]\[ z = 6(2) + 2(9) = 12 + 18 = 30 \][/tex]
- For [tex]\( (4, 9) \)[/tex]:
[tex]\[ z = 6(4) + 2(9) = 24 + 18 = 42 \][/tex]
### Step 5: Determine the Maximum Value
The maximum value of [tex]\( z \)[/tex] among the feasible points is [tex]\( 42 \)[/tex], achieved at [tex]\( (4, 9) \)[/tex].
Hence, the maximum value is:
[tex]\[ \boxed{42} \][/tex]
### Step 1: Convert the Problem to Standard Form
The original problem is:
[tex]\[ \begin{array}{ll} \text{Maximize:} & z = 6x + 2y \\ \text{subject to:} & 6x - y \leq 15 \\ & 2x + y \geq 10 \\ & x \geq 2 \\ & y \leq 9 \end{array} \][/tex]
First, convert all constraints to the form [tex]\(Ax \leq b\)[/tex].
The second constraint [tex]\(2x + y \geq 10\)[/tex] can be rewritten as:
[tex]\[ -2x - y \leq -10 \][/tex]
Thus, our inequalities become:
[tex]\[ \begin{array}{ll} 6x - y \leq 15 \\ -2x - y \leq -10 \\ x \geq 2 \\ y \leq 9 \end{array} \][/tex]
### Step 2: Identify Variable Bounds
From the inequalities:
- [tex]\( x \geq 2 \)[/tex] implies a lower bound for [tex]\( x \)[/tex] of 2.
- [tex]\( y \leq 9 \)[/tex] implies an upper bound for [tex]\( y \)[/tex] of 9.
### Step 3: Solve the System of Linear Inequalities
Use linear programming techniques to find the optimal values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
First, consider the intersection of the constraints by graphing or mathematical methods.
To find the feasible region, solve the system of equations formed by the intersecting constraints:
1. Solve [tex]\( 6x - y = 15 \)[/tex] and [tex]\( -2x - y = -10 \)[/tex]:
[tex]\[ \begin{align*} 6x - y &= 15 \quad \text{(i)} \\ -2x - y &= -10 \quad \text{(ii)} \end{align*} \][/tex]
Add equation (i) and (ii):
[tex]\[ 6x - y - 2x - y = 15 - 10 \][/tex]
[tex]\[ 4x - 2y = 5 \][/tex]
[tex]\[ 4x = 20 \Rightarrow x = 4 \][/tex]
Plug [tex]\( x = 4 \)[/tex] back into one of the original equations:
[tex]\[ 6(4) - y = 15 \][/tex]
[tex]\[ 24 - y = 15 \][/tex]
[tex]\[ y = 9 \][/tex]
The intersection point is [tex]\( (4, 9) \)[/tex].
### Step 4: Evaluate the Objective Function at Feasible Corners
Considering all constraints and variable bounds, the key feasible points you need to evaluate are located at:
- [tex]\( (2, 9) \)[/tex] (from [tex]\( x \geq 2 \)[/tex] and [tex]\( y \leq 9 \)[/tex])
- [tex]\( (4, 9) \)[/tex] (from the intersection above)
Evaluate [tex]\( z = 6x + 2y \)[/tex] at these points:
- For [tex]\( (2, 9) \)[/tex]:
[tex]\[ z = 6(2) + 2(9) = 12 + 18 = 30 \][/tex]
- For [tex]\( (4, 9) \)[/tex]:
[tex]\[ z = 6(4) + 2(9) = 24 + 18 = 42 \][/tex]
### Step 5: Determine the Maximum Value
The maximum value of [tex]\( z \)[/tex] among the feasible points is [tex]\( 42 \)[/tex], achieved at [tex]\( (4, 9) \)[/tex].
Hence, the maximum value is:
[tex]\[ \boxed{42} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.