Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the intervals over which the function [tex]\( h(x) \)[/tex] is decreasing, we need to analyze its behavior and its derivative for both pieces of the function: [tex]\( 2^x \)[/tex] when [tex]\( x < 1 \)[/tex], and [tex]\( \sqrt{x+3} \)[/tex] when [tex]\( x \geq 1 \)[/tex].
First, let's consider the function [tex]\( 2^x \)[/tex] in the interval [tex]\( x < 1 \)[/tex].
1. [tex]\( 2^x \)[/tex] for [tex]\( x < 1 \)[/tex]:
- To understand if this part is increasing or decreasing, we calculate its derivative.
- The derivative of [tex]\( 2^x \)[/tex] is [tex]\( 2^x \ln(2) \)[/tex].
- Since [tex]\( 2^x \)[/tex] is always positive and [tex]\( \ln(2) \)[/tex] is a positive constant, [tex]\( 2^x \ln(2) \)[/tex] is always positive.
- Therefore, [tex]\( 2^x \)[/tex] is always increasing for [tex]\( x < 1 \)[/tex].
Next, let's consider the function [tex]\( \sqrt{x+3} \)[/tex] in the interval [tex]\( x \geq 1 \)[/tex].
2. [tex]\( \sqrt{x+3} \)[/tex] for [tex]\( x \geq 1 \)[/tex]:
- To check if this part is increasing or decreasing, we calculate its derivative.
- The derivative of [tex]\( \sqrt{x+3} \)[/tex] is [tex]\( \frac{1}{2\sqrt{x+3}} \)[/tex].
- Since [tex]\( x+3 \)[/tex] is positive for [tex]\( x \geq 1 \)[/tex], [tex]\( \sqrt{x+3} \)[/tex] is positive and [tex]\( \frac{1}{2\sqrt{x+3}} \)[/tex] is also always positive.
- Therefore, [tex]\( \sqrt{x+3} \)[/tex] is always increasing for [tex]\( x \geq 1 \)[/tex].
From these analyses, we find that both parts of the function are increasing in their respective intervals. Hence, the function [tex]\( h(x) \)[/tex] is never decreasing over its entire domain.
Therefore, the correct answer is:
A. The function is increasing only.
First, let's consider the function [tex]\( 2^x \)[/tex] in the interval [tex]\( x < 1 \)[/tex].
1. [tex]\( 2^x \)[/tex] for [tex]\( x < 1 \)[/tex]:
- To understand if this part is increasing or decreasing, we calculate its derivative.
- The derivative of [tex]\( 2^x \)[/tex] is [tex]\( 2^x \ln(2) \)[/tex].
- Since [tex]\( 2^x \)[/tex] is always positive and [tex]\( \ln(2) \)[/tex] is a positive constant, [tex]\( 2^x \ln(2) \)[/tex] is always positive.
- Therefore, [tex]\( 2^x \)[/tex] is always increasing for [tex]\( x < 1 \)[/tex].
Next, let's consider the function [tex]\( \sqrt{x+3} \)[/tex] in the interval [tex]\( x \geq 1 \)[/tex].
2. [tex]\( \sqrt{x+3} \)[/tex] for [tex]\( x \geq 1 \)[/tex]:
- To check if this part is increasing or decreasing, we calculate its derivative.
- The derivative of [tex]\( \sqrt{x+3} \)[/tex] is [tex]\( \frac{1}{2\sqrt{x+3}} \)[/tex].
- Since [tex]\( x+3 \)[/tex] is positive for [tex]\( x \geq 1 \)[/tex], [tex]\( \sqrt{x+3} \)[/tex] is positive and [tex]\( \frac{1}{2\sqrt{x+3}} \)[/tex] is also always positive.
- Therefore, [tex]\( \sqrt{x+3} \)[/tex] is always increasing for [tex]\( x \geq 1 \)[/tex].
From these analyses, we find that both parts of the function are increasing in their respective intervals. Hence, the function [tex]\( h(x) \)[/tex] is never decreasing over its entire domain.
Therefore, the correct answer is:
A. The function is increasing only.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.