Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the intervals over which the function [tex]\( h(x) \)[/tex] is decreasing, we need to analyze its behavior and its derivative for both pieces of the function: [tex]\( 2^x \)[/tex] when [tex]\( x < 1 \)[/tex], and [tex]\( \sqrt{x+3} \)[/tex] when [tex]\( x \geq 1 \)[/tex].
First, let's consider the function [tex]\( 2^x \)[/tex] in the interval [tex]\( x < 1 \)[/tex].
1. [tex]\( 2^x \)[/tex] for [tex]\( x < 1 \)[/tex]:
- To understand if this part is increasing or decreasing, we calculate its derivative.
- The derivative of [tex]\( 2^x \)[/tex] is [tex]\( 2^x \ln(2) \)[/tex].
- Since [tex]\( 2^x \)[/tex] is always positive and [tex]\( \ln(2) \)[/tex] is a positive constant, [tex]\( 2^x \ln(2) \)[/tex] is always positive.
- Therefore, [tex]\( 2^x \)[/tex] is always increasing for [tex]\( x < 1 \)[/tex].
Next, let's consider the function [tex]\( \sqrt{x+3} \)[/tex] in the interval [tex]\( x \geq 1 \)[/tex].
2. [tex]\( \sqrt{x+3} \)[/tex] for [tex]\( x \geq 1 \)[/tex]:
- To check if this part is increasing or decreasing, we calculate its derivative.
- The derivative of [tex]\( \sqrt{x+3} \)[/tex] is [tex]\( \frac{1}{2\sqrt{x+3}} \)[/tex].
- Since [tex]\( x+3 \)[/tex] is positive for [tex]\( x \geq 1 \)[/tex], [tex]\( \sqrt{x+3} \)[/tex] is positive and [tex]\( \frac{1}{2\sqrt{x+3}} \)[/tex] is also always positive.
- Therefore, [tex]\( \sqrt{x+3} \)[/tex] is always increasing for [tex]\( x \geq 1 \)[/tex].
From these analyses, we find that both parts of the function are increasing in their respective intervals. Hence, the function [tex]\( h(x) \)[/tex] is never decreasing over its entire domain.
Therefore, the correct answer is:
A. The function is increasing only.
First, let's consider the function [tex]\( 2^x \)[/tex] in the interval [tex]\( x < 1 \)[/tex].
1. [tex]\( 2^x \)[/tex] for [tex]\( x < 1 \)[/tex]:
- To understand if this part is increasing or decreasing, we calculate its derivative.
- The derivative of [tex]\( 2^x \)[/tex] is [tex]\( 2^x \ln(2) \)[/tex].
- Since [tex]\( 2^x \)[/tex] is always positive and [tex]\( \ln(2) \)[/tex] is a positive constant, [tex]\( 2^x \ln(2) \)[/tex] is always positive.
- Therefore, [tex]\( 2^x \)[/tex] is always increasing for [tex]\( x < 1 \)[/tex].
Next, let's consider the function [tex]\( \sqrt{x+3} \)[/tex] in the interval [tex]\( x \geq 1 \)[/tex].
2. [tex]\( \sqrt{x+3} \)[/tex] for [tex]\( x \geq 1 \)[/tex]:
- To check if this part is increasing or decreasing, we calculate its derivative.
- The derivative of [tex]\( \sqrt{x+3} \)[/tex] is [tex]\( \frac{1}{2\sqrt{x+3}} \)[/tex].
- Since [tex]\( x+3 \)[/tex] is positive for [tex]\( x \geq 1 \)[/tex], [tex]\( \sqrt{x+3} \)[/tex] is positive and [tex]\( \frac{1}{2\sqrt{x+3}} \)[/tex] is also always positive.
- Therefore, [tex]\( \sqrt{x+3} \)[/tex] is always increasing for [tex]\( x \geq 1 \)[/tex].
From these analyses, we find that both parts of the function are increasing in their respective intervals. Hence, the function [tex]\( h(x) \)[/tex] is never decreasing over its entire domain.
Therefore, the correct answer is:
A. The function is increasing only.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.