At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the new coordinates of the endpoints of the segment [tex]$\overline{PL}$[/tex] after applying the translation, follow these steps:
1. Identify the given coordinates:
- Point [tex]\(P\)[/tex] has coordinates [tex]\((4, -6)\)[/tex].
- Point [tex]\(L\)[/tex] has coordinates [tex]\((-2, 1)\)[/tex].
2. Understand the translation mapping:
- The translation specifies that we should add 5 to the x-coordinate and keep the y-coordinate the same: [tex]\((x, y) \to (x + 5, y)\)[/tex].
3. Apply the translation to point [tex]\(P\)[/tex]:
- The x-coordinate of [tex]\(P\)[/tex] is 4. After applying the translation, the new x-coordinate will be [tex]\(4 + 5 = 9\)[/tex].
- The y-coordinate of [tex]\(P\)[/tex] is [tex]\(-6\)[/tex]. Since the y-coordinate doesn't change, it remains [tex]\(-6\)[/tex].
- Therefore, the new coordinates of [tex]\(P^{\prime}\)[/tex] are [tex]\((9, -6)\)[/tex].
4. Apply the translation to point [tex]\(L\)[/tex]:
- The x-coordinate of [tex]\(L\)[/tex] is [tex]\(-2\)[/tex]. After applying the translation, the new x-coordinate will be [tex]\(-2 + 5 = 3\)[/tex].
- The y-coordinate of [tex]\(L\)[/tex] is 1. Since the y-coordinate doesn't change, it remains 1.
- Therefore, the new coordinates of [tex]\(L^{\prime}\)[/tex] are [tex]\((3, 1)\)[/tex].
So, after applying the translation, the new coordinates of the endpoints are:
- [tex]\(P^{\prime}(9, -6)\)[/tex]
- [tex]\(L^{\prime}(3, 1)\)[/tex]
Therefore, the correct option is:
[tex]\[P^{\prime}(9, -6), L^{\prime}(3, 1)\][/tex]
1. Identify the given coordinates:
- Point [tex]\(P\)[/tex] has coordinates [tex]\((4, -6)\)[/tex].
- Point [tex]\(L\)[/tex] has coordinates [tex]\((-2, 1)\)[/tex].
2. Understand the translation mapping:
- The translation specifies that we should add 5 to the x-coordinate and keep the y-coordinate the same: [tex]\((x, y) \to (x + 5, y)\)[/tex].
3. Apply the translation to point [tex]\(P\)[/tex]:
- The x-coordinate of [tex]\(P\)[/tex] is 4. After applying the translation, the new x-coordinate will be [tex]\(4 + 5 = 9\)[/tex].
- The y-coordinate of [tex]\(P\)[/tex] is [tex]\(-6\)[/tex]. Since the y-coordinate doesn't change, it remains [tex]\(-6\)[/tex].
- Therefore, the new coordinates of [tex]\(P^{\prime}\)[/tex] are [tex]\((9, -6)\)[/tex].
4. Apply the translation to point [tex]\(L\)[/tex]:
- The x-coordinate of [tex]\(L\)[/tex] is [tex]\(-2\)[/tex]. After applying the translation, the new x-coordinate will be [tex]\(-2 + 5 = 3\)[/tex].
- The y-coordinate of [tex]\(L\)[/tex] is 1. Since the y-coordinate doesn't change, it remains 1.
- Therefore, the new coordinates of [tex]\(L^{\prime}\)[/tex] are [tex]\((3, 1)\)[/tex].
So, after applying the translation, the new coordinates of the endpoints are:
- [tex]\(P^{\prime}(9, -6)\)[/tex]
- [tex]\(L^{\prime}(3, 1)\)[/tex]
Therefore, the correct option is:
[tex]\[P^{\prime}(9, -6), L^{\prime}(3, 1)\][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.