Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To simplify the given quotient and find where it does not exist, we need to carry out the division by multiplying by the reciprocal. Here are the steps:
1. Rewrite the division as a multiplication by the reciprocal:
[tex]\[ \frac{3 x^2 - 37 x}{2 x^2 + 18 x - 7} \div \frac{3 x}{4 x^2 - 1} = \frac{3 x^2 - 37 x}{2 x^2 + 18 x - 7} \times \frac{4 x^2 - 1}{3 x} \][/tex]
2. Simplify the resulting expression:
[tex]\[ \frac{(3 x^2 - 37 x)(4 x^2 - 1)}{(2 x^2 + 18 x - 7)(3 x)} \][/tex]
3. Factor the polynomials where possible:
- [tex]\(3 x^2 - 37 x\)[/tex] can be factored as [tex]\( x(3x - 37) \)[/tex]
- [tex]\(4 x^2 - 1\)[/tex] is a difference of squares and can be factored as [tex]\((2x + 1)(2x - 1)\)[/tex]
- [tex]\(2 x^2 + 18 x - 7\)[/tex] is a bit more complex to factor, but we'll look for factors [tex]\((2x + a)(x + b)\)[/tex] that satisfy the equation. But for the given scope, you might need additional factor techniques or let’s assume it's in the simplest form as is.
4. Substituting these factorizations back:
[tex]\[ \frac{x(3x - 37)(2x + 1)(2x - 1)}{(2 x^2 + 18 x - 7)(3 x)} \][/tex]
5. Cancel any common factors in the numerator and the denominator:
- The [tex]\(x\)[/tex] in [tex]\(x(3x - 37)\)[/tex] cancels out with [tex]\(3 x\)[/tex].
- Other factors might need polynomial solutions approach but we could try simpler arithmetic based reduction.
So the expression becomes:
[tex]\[ \frac{(3x - 37)(2x + 1)(2x - 1)}{2 x^2 + 18 x - 7} \][/tex]
6. Find the conditions where the expression does not exist:
- The expression does not exist where the denominator is zero.
[tex]\[ 3x = 0 \implies x = 0 \][/tex]
Also, look for values where the denominator [tex]\(2 x^2 + 18 x - 7 = 0\)[/tex]
Solve the quadratic equation [tex]\( 2x^2 + 18x - 7 = 0\)[/tex] using quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \implies b=18, a=2, c=-7 \][/tex]
yielding:
[tex]\[ x = \frac{18 \pm \sqrt{324 + 56}}{4} \implies \frac{18 \pm \sqrt{380}}{4} \][/tex]
finding roots appropriately [tex]\(\frac{9 \pm \sqrt{95}}{2}\)[/tex].
Therefore, the simplified form numerator, non-existing points and denominator can be determined as follows:
- The simplest numerator form is [tex]\( (3x - 37)(2x + 1)(2x - 1) \)[/tex]
- The denominator is [tex]\( 2 x^2 + 18 x - 7 \)[/tex]
- The expression does not exist when [tex]\( x = 0 \)[/tex] or [tex]\( x = \frac{9 \pm \sqrt{95}}{2} \)[/tex].
So choose the options from drop-down as per solution enhancing simplification.
1. Rewrite the division as a multiplication by the reciprocal:
[tex]\[ \frac{3 x^2 - 37 x}{2 x^2 + 18 x - 7} \div \frac{3 x}{4 x^2 - 1} = \frac{3 x^2 - 37 x}{2 x^2 + 18 x - 7} \times \frac{4 x^2 - 1}{3 x} \][/tex]
2. Simplify the resulting expression:
[tex]\[ \frac{(3 x^2 - 37 x)(4 x^2 - 1)}{(2 x^2 + 18 x - 7)(3 x)} \][/tex]
3. Factor the polynomials where possible:
- [tex]\(3 x^2 - 37 x\)[/tex] can be factored as [tex]\( x(3x - 37) \)[/tex]
- [tex]\(4 x^2 - 1\)[/tex] is a difference of squares and can be factored as [tex]\((2x + 1)(2x - 1)\)[/tex]
- [tex]\(2 x^2 + 18 x - 7\)[/tex] is a bit more complex to factor, but we'll look for factors [tex]\((2x + a)(x + b)\)[/tex] that satisfy the equation. But for the given scope, you might need additional factor techniques or let’s assume it's in the simplest form as is.
4. Substituting these factorizations back:
[tex]\[ \frac{x(3x - 37)(2x + 1)(2x - 1)}{(2 x^2 + 18 x - 7)(3 x)} \][/tex]
5. Cancel any common factors in the numerator and the denominator:
- The [tex]\(x\)[/tex] in [tex]\(x(3x - 37)\)[/tex] cancels out with [tex]\(3 x\)[/tex].
- Other factors might need polynomial solutions approach but we could try simpler arithmetic based reduction.
So the expression becomes:
[tex]\[ \frac{(3x - 37)(2x + 1)(2x - 1)}{2 x^2 + 18 x - 7} \][/tex]
6. Find the conditions where the expression does not exist:
- The expression does not exist where the denominator is zero.
[tex]\[ 3x = 0 \implies x = 0 \][/tex]
Also, look for values where the denominator [tex]\(2 x^2 + 18 x - 7 = 0\)[/tex]
Solve the quadratic equation [tex]\( 2x^2 + 18x - 7 = 0\)[/tex] using quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \implies b=18, a=2, c=-7 \][/tex]
yielding:
[tex]\[ x = \frac{18 \pm \sqrt{324 + 56}}{4} \implies \frac{18 \pm \sqrt{380}}{4} \][/tex]
finding roots appropriately [tex]\(\frac{9 \pm \sqrt{95}}{2}\)[/tex].
Therefore, the simplified form numerator, non-existing points and denominator can be determined as follows:
- The simplest numerator form is [tex]\( (3x - 37)(2x + 1)(2x - 1) \)[/tex]
- The denominator is [tex]\( 2 x^2 + 18 x - 7 \)[/tex]
- The expression does not exist when [tex]\( x = 0 \)[/tex] or [tex]\( x = \frac{9 \pm \sqrt{95}}{2} \)[/tex].
So choose the options from drop-down as per solution enhancing simplification.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.